Seep. 174

$$
\begin{aligned}
& W H-6-4455 \\
& \text { Wilfuid RALL } \\
& 11420 \text { LUXMANOR RD. } \\
& \text { ROCKVILLE, MD. } \\
& 20852 \\
& 49-6.4325 \\
& \text { Bldg } 31 \operatorname{Rm} 9-A-17 \\
& \text { Bethesda, Mid. }
\end{aligned}
$$

Research \& Comprutation Diary
(contimner foom Book5)
This Legins in famsary 1965
goes thun July 2,1965

$1 / 5 / 65$ (Therday)
Nar page, newbook, new year, nawopstimism? Yesterday went to dentist, hopefully to finish siege of dental work. Post month of especially post weok were undernimed hy tooth ache, combliied with "battle fotigue" of hatidoy distractions - Lul toothaeke F was a very real triggen of cousiderable deprassion of scientifir morale. Todoy, hope to return to opstimistic track of with help of aspirvic seturn to resolve of 12/3/64 (paje 7Y of Book 5) to write in mosmings and defor distractoons to oftornoons 1 Honever, I least todoy, selay rigitity to pernit momings alsofor strategy o alistraits etc.

Deablines ahead, mamy of which should be anticipated
(a) Fef. I dealline for Tohyo obstract
(b) eadr fan fer Conder's Cal.Tech absthacts
(c) Warch 5-8 Col Tech le otures
(d) Iatefuly AsondyAngast at Berllary Beac
(e) late ficly sonbtugast at Beth airy Beach
(f) Sept. in Tobyo (?L.A.)
(f) Sept. in Tokyo (?L.A.)

Re Toryo obstract, o halbeen planinig to work up the spatial inlibition degeveracy of potency story, but came to realization this moming That it wonld be loss schizi to wespent Witol storl Tohyo, becanse Then wonle not corfhict with task of finishning popers; cie, it is lothe efficient, prectical 4 moside bositung to combine the two taskes into oric.

Some froblens in Bevelopning a Theory of Dendritic Neurous

1/5/65
Among other Thnigs, figures for mitral proper of slides for Tokyo become a common objective also, it seams very likely that mitral study would be of no re interest to regular neurophypiologusts. The inhtutory story is probably more for modelers and biophysicists. Also, t will feel less conflicted about working on numerous details, as They relate to the mitral story: see also the related project with Phil Nelson of Van Buren. After Tohyo, ta h up gstory!

* In the next dog or two, prepare abstract for Tokyo.

Today, better switch to preparnig titles and olestroets for Fonder
(I) Theoretical significance of dendritic trees for neuronal input-ouput relations. (sa men 0 jus) \& P

Problems and tazadouses in the quantitative sta soredoys in e quantitation study of dendritic branching.
(I)) would emphasize non-hiearity of spatiotemporal pattern as in Ojaipoper of relevance to nerve nets.
(III) wooed track moreon avatorny, $\tau, \lambda, L / \lambda, P$, safety factor (? Mither 8 Bridger) - problem in futioduction

$$
\geq
$$

$1 / 5 / 65$
Jor Tokyo Cbitioct, tithe could he some as ditto, or
Theoretical Reconstinction of Potentials Recorded in the Roblit olfactory Bulb in Response to Syuchsonons Antidromic activation.
shorter tithe caved he
Theory for Computation of Olfactory Bulb Antidromic Potentids
Points to cone: Pervodi IoII-Vitral: PesiodIII Gradable Punctured Syminetry \& Potential Divider Effect Neg peak not a propagation velocity. J Active us Possove Denbites
 quation of 4λ \& hot \&cool.
Why need to rectal notebooks
$1 / 7 / 65$ Wrote gordon yester don, writing Fer der today a hope to s deal with Tokyo abstract tononour. Toothache is still with me. Woke me lost niglet. aspirin cuts the pain, lent not sure it restores drive. This mowing spent tina discussury with fore + form Stephenson re John's publication situation. Abs, yoterday, leaned that Cordon Conference is to be July 19-23 at lOndoner, N.H. note: That last year's announcements appeareal in the March 13,1964 issue of Sueince Proctor acadung abs, yertardoy collected information on group plightito Tokyo.
$1 / 8 / 65$ got off letter, started on abstract for Th hoo; completed a fist dost which was nat to git ion

$1 / 12 / 65$
Reading Jose's copy of "Adaptive Control Processes" a Guided Tour
By Richard Bellman.
Price ton 1961
(basedon a set of invited lectures)
Introduction useful t shows how meh he restricts problem.

$$
p .13
$$

* Uutrestung to me that on 1st page of Chopt.1, he emplionjes some points that thane often eupherized "". concept o ploy a role equally important with that of equations, and the construction and interpretation of mathematical models is of even greater significance than the solution of the pacticulor equations to which They grove rise." easkir on the some page, he wishes "to log bare the many approximations that are consciously ar uncomaondy P made in starches of this type" an lats "Only if ne are very clearly - almost painfully - aware r of the mounfold aspects of the problems that arise, can we hope to select pertinent mathematical models and utilize nueannigful mathematical techmines.
pbs waits mipulyor a animations to be explicit. also" what is remarkable is that dep inderstandury of many playical processes can be obtained prove rudimentary assumptions"!
\square
$31+2 x+2080$

1a81 mastomion

$1 / 13 / 65$
"Optimization Theory and the Design of Feedbacke Coretrol Systans" CharlesW. Messiam III" (Guesdetatin)

$$
\text { Wc graw-1till } 1964
$$

duterasting nourtept with port-war perspective
Prefoce mahes akhowlefyemid to Belhman tors to Pontryagin. Litroduction traces roolution of contral the ory stimulatel by Word wor II is Cusanatic Cortrol Theory went from coscaded rysleñs to feedbo de sypters.
sausitin̄, statulity \& peforuan formeldal mothonsitically.
Tranform methods involury complyy vorioble theary frequeney domain anolyis.
Now premures created lnyneed for syptems to operate in outer spoce.
"Cursartly, the opplied mothematicion is succeedw in formulating feedbade control theory an a profound mathematical and conceptual basis. The stabilty reary of Iyapunorr, The Fopics of observalility and controllablity osigniated by Kalman, and the methematical optimizotion theores of Bellman and Pontryagin are notable contrituctions to the mathematical theory of antornatic control."
"Philssoplically, optimizotion thesry is an attempt to provide a meeus for direct system syutheris as opposed t_{0} mptem syinthesis via repeated analyses of controllers selected on a trial-and-essor basis. From practical stadfain, hove adrontage o/spec + Solve in time domain. awoid mony problems of frep. domain; fur thesmore, kseaneny domain nothods essentially are linited to linecer time-invarient

Su this connection note Mp. 12-13 of Massiam He distinagnishes between
paraneter optrinizotion
impuelse serpouse opdimization
susten optinization
bnt all cores, pesult from minimiznig some error indey
Systern optrinization is suppood to sedect both the corfigusation of componen values, lat presumably the number and kunds of conpents must be pre-specified.
Wouder how truby ost. configuration is faund. Quetion olso abow adequacy of essor rieasure.

For anolog computations, a good example of state sigual. is the aituit sigual of the in teqpatoss used to solve a system of doff - equationa.

1/13/65
Gore 4 \& agreed in conversation tho it would he well to muley Whassians book to decide if bare a study senior on it of also to ponder
\leftarrow The urider question of applicabibty of optimization Theory to current problems of biology.
p. 5 Mercian claims that the concepts of response eytrepolation. (Which is the basis for rystam stability), and desired response prediction (which is the basis for systemperfornance) are the cruy of all control problems.
p. $7 m_{1}(t), m_{2}(t), \cdots, m_{M}(t)$ are control signals, or inputs, or indepen bant variables
of the dymanni process
$q_{1}(t), q_{2}(t), \cdots, q_{Q}(t)$ are respanesignals, or outputs, or dependent voribbles
Ttume need not he * physical variables, ut
$X_{1}(t), X_{2}(t), \cdots X_{N}(t)$ are state signals (onsputs) state sigudsore not generally anociated with frequency domain techniques. T

Exclude hysteresis (memory) o smintar phenomena \therefore dynamic process is state-determined. is. if state is completely defined at one particular trine, it is determined for all times. (Hor some peoples, this seams to be the defiri, ion, of a dynamic process). Wy Thought is that lysterans can be intapp, as apparent pronom. due to incomplete set of state variables.

$+0$.

noticher
 $2+20$

 $3+2046$ $3+2+2+10$

113365 adl a forith set of varibles (secoul rettof miputs) colled "lood distuibance signals"

$$
u_{1}(t) ; u_{2}(t), \cdots u_{N}(t)
$$

Diapnom of dymanic proers

negend $\vec{m}(t), \vec{q}(t), \vec{u}(t)$ an $\vec{x}(t)$ as colurnn vectors having M compronents
Usurg vector notation, whows
D.E. $\dot{\vec{x}}(t)=\vec{f}[\vec{x}(t), \vec{m}(t), t]$
where \vec{f} dras a dejerdan a upon time conved ly lood distalens oposstily alre hecouse of time verying coeffes. this iss state equation, sometures use pacticiclar cose
$\begin{aligned} \text { General rempone equation is } \vec{g}(t) & =\vec{g}(\vec{x}(t) \\ \text { o spec. Cose is } \quad \vec{g}(t) & =A \vec{x}(t)\end{aligned}$
whereA is a matrix

\qquad

\qquad
\qquad $\left(1+\frac{1}{4}\right)$

1/13/65
p. 9 note that "saturation equations" maybe needed.

Af the process is linear, saturation does not occurs.
The matrices A, B, C havedennento which, ingeneral, are time dependent.
$\beta=0.1$, then G_{r} can be interpreted as consisting
Want $\varepsilon+g=1$
$\varepsilon=0.1 \mathrm{~g}$

$1 / 14 / 65$
Time tor settle down to writing again neat week. Yester coy reading in Control Theory books Cess Hodgkin gave N.I.H lecture: Movies of squid + wattledosh \& of rolling ayoplasm ont of squid fiver. Reversing miside o outside ebctsolgte reverses restring potential but do not get action potential, because of a permeability asymmetry (not specified). also pointed to some results of fiitgan, at Combirge, shownog that as uni de contraction is blocked by cyanide, uncle impulse becomes more nesvelike. Prawns hove nygelinated fibers. Cole's coucludriz semoshs placed emphasis upon hey importance of btadghin's concern (throughout the war) with the action protential overshoot. He miphied that this had been the key to subsequent success in toms of the Na, K conductance story. F would guess that he has decielad That this was the key point that he himself had failed to make the most of. Hodghin did refer to learning the squid preps. from Cole and alsoleter, that Cole mivanted voltage clamp. Epperanthy Chandler \& Moves hove worked with Itodghin to calc. Zeta potatial for fixed charge inside ayom membrane which accounts for dis crepancies between low of high ionic concbutratwons inside. Got a figure for the distance between fixed charges.

Thoughts last might. Whit get ont shoos note on action pot. Model and to take care of anodalbiech excitation, may need to permit neg Gi up to the ament that is imphrit ni Gr (ie way need footnote to expers Gre as a linear. comb. of $G_{\varepsilon} \not G_{j}$), this permitting G_{j} veg up to this
 anodal block e accitation of is probobly Orts. May want to check. Qelso might conceivaty mini Kandel's anomolono rectification
$1 / 14 / 65$
See Ted hewurs tomonow ofternoon
Chak lost for now i rut weals.
(1) revise Tohyo obstract of complete negestration
(2) resume Witral mounscript + figures
(3) as soon as possible on action pot. nodel (seopovionpars)
(4) seriondy conniber short note on potential divider story, beconse of relevance to other situations. Need to chede to see what Bill tesins done of what he knows of o thens.

On the Tolnjo dbstian con sove spoce lyy not specifgny the deptho, surice they core not used. Parheps inprove other senterices, cess, coned refer to latancy with distance girang orely an ppperent conduction velocity?

Also, thinir dow how protectial divoder affect goves renilts which differ from suigle unit in volume conductor. Do this ly means of equations.
workfrom $V_{i}(x)$
compue $V_{e} \propto I_{m} \propto \frac{\partial^{2} V_{i n}}{\partial x^{2}}$

with $V_{e}=V_{e_{0}}+\int \frac{r_{e}}{r_{i}} \frac{\partial V_{i}}{\partial x}$
of thif form Lonte \& Plonsey 1
of thinform
Iu pustivilar ; entirely defpeent when $\frac{\partial V_{i}}{\partial x}=$ const. Cbro, dippren ingeneral consobler

May wain concibe theortical poper whith soyp it will he numerically iflustrated elsewhere.

 Shatana

\qquad
\qquad

\qquad
$(x): 1+20+50$
\qquad
\qquad
\qquad
$1 / 15 / 65$
Ted Leuris clains that he can fit all of the locus type behovion seen in cardiar gaingloon ly mears of adjustring params of his avalog to HAH functions. He does nat use nu, noh, he sinubutes the dopendence of OK I GNa upon V and tine.

Had lunch o vosit with ted \& hibrascope associate and Bof Taylor o Dick 7 itglangh. Discussed mang thurg. Taylos seported some of the receni semets fom the Wiami muetrig he hod jut atteuded. Lawis was paiticularly concernt abow his asmuption which seploced abolute Vimi Wo woth ΔV as the voribble $\operatorname{det} \mathrm{gNa}$

* hewor specificolly ashed me to provide him woth examples of where theory probicted expt. in the comre of niry research. It anvon had mentioned this to hin of he was not sure of speafics. Lanswewt re wowspueptic imps onpput t gave hini thone reprints, but actually, f hove a number of examples that are at least somenhat relevar.
(1) The 1957 ppoper "predictet" $\tau \sim 4$ unser and deloyed tionmitter $\rightarrow 0$ Qlso 1900 papes presentel theary faot linagar plot. These predictions corparint by iny 59 poper of infoctly Ecles 61 poper.
(2) $53+57$ absià predictel ropid soma apnilegation time const.
(3) 1953^{755} hypi -abpir theory alld /or seqments / signoid 4 oxpt, wher phoporly mity. - confirmedthis. Ofoonsse"rmhamens mithesQebso, the srigle pararneter:
(4) Roll \& tunt - ogranimprelictola compimalsigmoidshift.

$$
8
$$

1/18/65 further examples
(5) Entruelhila pot theory-decrenmon with disfance also pos. pot follomiog neg.
(6) Soma equolization ropid time coustant
(7) Also, notion of OA soma 1960 IPSP Finin Come 1961-62 potency.
Luwunting to Ted point ont mattes of degree
is. (A) prodiction followind ly expt.
(B) u
"remiterp. of expt..
(C) expt. intesp problen \rightarrow theory

Re binietic model, must take a second look a prapero tha Nueller wrote from Roole. tust. to see i/ Noy hove any thun $\mathrm{in}_{(1 / 2265) \text { seems not to. }}$ comon cuith ny model.
Re grotients in contical loyer, must recheck Tesh is and Lorente. The nore A thmin olvon, it, the more A suspect that most people hone just not thought on these grodients, as to who they seally repreien. There is vague talle of dipoles, but the grabient in fiald of suigle dopole is very disperant from that of loyer. Way weed to ngfer to bkhmott - Woodhury-gloor trotneas for regoon ontside, bis not unside loyer. The need, unfortursately, it for a carpul presentation of the idens and implications.
$1 / 18 / 65$
? shas popers to Science or other joromals re moterial to be revealed Cal. Tech.; Gordon; Tohyo.
(1) Syndronons symuntry story
(2) action potential leinetics story
(3) arifibromir in resvon story
(4) faitors in the potency of symptric in hilitition
(5) woth. for small group of dendsitic neuroms
? Ir gordonConperence not rofficient to let several point units reppesent a neuron, becouse of several differencs
(A) wishbor compertinants of same neuron influence eoch other $g_{i j}=q_{i i}$ (a) bidurictionally, θ groded, © Cortinnorsly
(B) ayou to neuron assumed to be (a) unidirectional, (b) all-on nothing
(c) brof.
\therefore A, Hicopporote both into a single matrix
electrotoons has $g_{i j}=g_{i i}$
whever syuptic has $g_{i j}=\delta(t)$ and $g_{j^{\prime}}=0$
Conceivably, for a respet. neuron, caned hone stsing of $\delta(t)$, lat This not seally c necerson if let sepett

However, sfill think will need separate set of matrices for offects of activity upor ε of q of each compratinens. nethor,

213-478-9711- \&it 2081 UCLA
1/18/65 Larry starts phowed me 1/15/65 re Gordon Corference Proysam which is nour henig finclized selathin to what he totd mo last 7 all
Sersion Clairmon
olto Schmolt EKG
Mason - Sensory Commm. - Wc Cam \& Langer (~ Harthine)
Stak - Woth CNS - Mc Culloch \& Suto (MIT-Letanin Foog retina)
Taponomi Pattom - Takchashi o Julvano (astm. ©. Little)
Batholoway - Strochastic - Stephenson a Barucha Reed
Banct - Non-Limer Contral Syrtams Bellmon-0.50 Smith (Berlaly)
Jandohl - Rasheasky - Hist. Matrs Bid.

- Trency Sessia - cuse of lomputerion Trang - Peshirs, Talbot tomen

Rell - Woth. Biophyp $-\left\{\begin{array}{l}\text { attinger-Premus Fhar relotiono ni circalte. } \\ ? 1 / 19 / 65 \text { Pidh Fibltugh }\end{array}\right.$ Wath Uucdels of \&riation + Psoparation
goly 19-23 ar Andower, N.H.
$1 / 22 / 65$ 7urther revision of Tolnjo Gbistrat.
Seitoff Tolsyo Registration forms 4 check.
It does seem that the footh ache srege is finially oner.

14

bases malunto है।
(02x) $5: . .37=3$
shatiollat

1/22/65 SuperporitiaTime Scale
Sookny at mitral, aron, granule, supposition
figure that was bared upon short passive with flat F. C.

$$
64795.9041
$$

Timescale of orignial plot of 8 computed series was 20 KT to the inch.

$$
\begin{aligned}
& 11 \text { equals } 0.2 \tau \\
& 1 / 2^{\prime \prime} \text { equals } 0.1 \tau \approx 0.8 t_{0} 1 \text { mos } \\
& \approx 0.4 \text { to } 0.5 \mathrm{mc}
\end{aligned}
$$

And the Fichs of the final figure are at $1^{\prime \prime}$ intervals
Bun note that final figure west trualated slightly; almost exactly $0.1^{\prime \prime}$ so that origins find foruesconempto $K T=1 T=8$

$$
\text { GL woes cut. } 9 \text { ? }
$$

$$
\begin{aligned}
& \text { MBL was alt. } 4 \\
& \text { GRL was ant. } 2
\end{aligned}
$$

$$
\text { GRL was apt. } 2
$$

Now, for active doudites use 64795.9059 mitral to superimpose with granule only.

tried for two difference granule latencies.

JC. Wavertil $=10$.
 1.

$1 / 27 / 65$ Now toy to assess This x earlier superposition agonist the series provided by Gordon.
One important point is that Active dendrite case does not fit very well at MBL and GRL al though it fits OR at $G L \& P L$. The period II positivity appears too large and too sharp in the supersoo. as compared with the data. at MBL, He data show the period II pos, to he sig. smaller than thou the ne. (m idles. value), notice that Ward 30 prod, 2 shows periods II \& III well separated

Now, the problem here is that a pretty strongly diphasic granule is needed to produce this. Woe than seems reasonable.

Also, of GRL, gromile pros. would hove to be very sharp + large \& perfectly timed to pratt a substantial dip that is not seen experimentally.
This begin to look like an argument in faro of the passore case, with the slow fall of a smaller mitral (T) requiring less pelt timing of go mule pos. 3rdthy shows this can be done, but is this too specific?
$1 / 28 / 65$
Paradox. Afeel Anlould write up action pot. kinetics and punctured symmetry, although A don't have figmes ready a elsa, with mitral poper, remaining figures are an obstade, yet, work with Ezra a with spherically sym-nouron has figures already mepored from 1961 Congress of this is still not written up. Would make more sense to finish up the old work for which figures are ready, or nearly ready. However, coned write brie notes for Science on the two items first mentioned. My 1957 Since proper was worthwhile.

1/29/65 Sesionly tempted to devote sone solid week to a popes on these kinetics, but then prudence suggests it would be wiser to finish mitral paper. Howave the contr a gamer is that mitral paper can surely stand loss of one more week and the week's concuitiation on the other task cornel prone to he stimulating and morale building. Hope to build up steam this way, as well as getting the note done. Moghe this could le come a pattern: occasionally, when thing are lagging, take ont a week for concentrated effort on a short note; this would he similar to having to take time ont to propere lectures or seminars, of could even lead to that as well.

1/29/65 Such conversation with Bill ttaguis brought out the point of view (curnibged U.C. Land) that a good thearetrial biophysicist ought to be able to design the hest experiments of furthermore, The miplication that this is the lest thing for hin to do. ii, most likely to be misnomer +recognized as such. He thought that synaptic tempers fer prom pargnoptic potential to prortsyapstie pot. is a crucial unsolved problem (fane, theme done pare dit, but haw complete). Cha good erst demean for deubsitic λ and τ needed.

$$
\begin{aligned}
& \frac{d \varepsilon}{d t}=k_{1} v^{2}+k_{2} v^{4}-\left(k_{3}+k_{1} g\right) \varepsilon \\
& \frac{d g}{d t}=\left(k_{5}+k_{6} g\right) \varepsilon-k_{7} g \\
& \text { fr } \dot{g}=0 \quad \varepsilon_{s s}=\frac{k_{7} g}{k_{5}+k_{6} g}
\end{aligned}
$$

for f small,$\varepsilon_{s s} \rightarrow \frac{r_{7}}{R_{s}}$
$2 / 1 / 65$
For isolated membrane, consider

$$
\begin{aligned}
& \frac{d V}{d T}=-V+(1-v)-(v-\beta) y+\psi \\
& \frac{d}{d T}=a_{2} V^{2}+a_{1} V^{4}-\left(b+b_{2} g\right) \\
& \frac{d y}{d}=\left(c_{1}+c_{2} y\right) \&-c_{3} g
\end{aligned}
$$

New notation not adopted here
where $\frac{c_{1}}{c_{2}} \stackrel{\text { need }}{\text { In }} \frac{b_{1}}{b_{2}}$ as in earher versions note $y, \varepsilon, g \rightarrow v, x, y$
Now look bock to Book 4, pp. 35-55
composed with $p .38$, here $g=0$ given $y_{s s}=\frac{\left(c_{1}+c_{2} y\right) \varepsilon}{c_{3}}$ $g_{s s}=\frac{c_{3} g}{c_{1}+c_{2} g}$ and $\dot{8}=0$ gives $\mathbb{X}_{s s}=\frac{a_{2} v^{2}+c_{4} v^{4}}{b_{1}+b_{2} y}$ cf.pp 47648 of Book 4
$\dot{v}=0$ gives

$$
V_{s s}=\frac{x_{s s}-\beta y_{s s}+\psi}{1+x+y}
$$

Problem is to decrease below y for small v and y
Precarious $P_{3} \gg R_{4}$ by factor 10 to 50
That mems heres, initially $c_{1} \gg c_{2}$ and $b_{1} \gg b_{2}$
Here, for $y_{5 s}$ small, $x_{s s} \approx \frac{c_{3}}{c_{1}} y_{s s}$
\therefore increasnig C, withon neersanily increase r b, would probably help. This world permit y to build up with an (perheppo) pulling X down quite so hard.
see p. 33

2/2/65 Wodity WXR $751 \mathrm{C} \longrightarrow 752 \mathrm{C}$
so thot $\frac{d f}{d T} \neq\left(R_{5}+R_{6 G}\right) \varepsilon-R_{7} g$
Charge is stataments $300+310$ of drop $320,330+340$ whochuedold $R(7)$ as $R_{7} * V * g$
300 wad $Q G R O=R(5)$ * ELOSS
nowthecons $Q G R O=(R(5)+R(6) * Y) * X$
310 wos QLOSS $=R(6) * Y$
now hecomes $Q L O S S=R(\eta) * Y$
Sotup a rum sumiles to old series $5 \times 6 \times 7$
old $R_{5} \times R_{3}=$ new R_{5}

$$
45
$$

$$
.05 \times 50=2.5
$$

\#6

$$
.1 \times 50=5 .
$$

\#7

$$
.05 \times 50=2.5
$$

$$
\begin{aligned}
& R_{5} * R_{4}=w R_{6} \\
& .05 * 1=.05 \\
& .05 * 1=.05 \\
& .05 * 2 .=.1
\end{aligned}
$$

wout R_{3} suadler, bio R_{5}

	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}	R_{6} / R_{5}
R_{7} / R_{6}						
25	2	5.	1	10	2	100
nold	100	(50)	doulle)	same	soure	
					10.	

Tryatro 65
$\begin{array}{llll}\mathrm{OH}_{2} & 25 & 2 & 1\end{array}$ 10.
10. fanmaedeloy

2/3/65 Phone call from Phil Nelsonsemindedme of the moblem \forall suggested to hin A Van Buson in comparing pos \& neg of unit i population fields of notonnewns,
Phil's more careful sevieur of The data seems corpirinatory. Van Buran con see 3 os 4 unit contributions to veg, bit essentially smooth graded pos. \therefore Rough lunch is that only nearest neighbor add for neg. whereas two on Three or more shells of neiglows add for pos.

Two opproadus: (1) use explidecrements with dist.
(2) Comider Theoretical differences.
Theoretical
Compere addition of dipoles (inperallel) \& \& θ
With suparimproed quadmpoles

$$
\text { (4) }{ }^{\infty}
$$

Tor dipole field, potential $\propto \frac{1}{r^{2}}$ quadrupole,

$$
\propto \frac{1}{r^{3}}
$$

\therefore Rom into problem of how to characterize the order of a multi pole.

Supper tat l_{1} get $\frac{P_{0}}{r}+\frac{P_{1}}{r_{1}}\left(\frac{l_{1}}{r}\right)+\frac{P_{2}}{r_{2}}\left(\frac{l_{1}}{r}\right)^{2}+$

- gat l_{2} got $-\frac{P_{0}}{\Omega_{2}}-\frac{P_{1}}{r}\left(\frac{l_{2}}{\Omega}\right)-\frac{P_{2}}{r_{2}}\left(\frac{l_{2}}{\Omega}\right)^{2}+$
combine toes
factarair $l_{1}-l_{2} \quad\left(l_{1}-l_{2}\right)\left\{\frac{P_{1}}{r^{2}}+\frac{P_{2}}{r^{2}}\left(\frac{l_{1}+l_{2}}{r}\right)+\frac{P_{3}}{r^{2}}\left(\frac{l_{1}^{3}-l_{2}^{3}}{\left(l_{1}-l_{2}\right) r^{2}}\right)+\right.$
Then for $+q$ at $-l_{1}$ get some expressions for $P(\pi-\theta)$
- \& of $-l_{2}+$ note $P_{1}, P_{3} \ldots$ are dod
$P_{2} \ldots$. are er in
Thus get $\frac{2 \dot{q}\left(l_{1}-l_{2}\right)\left(l_{1}+l_{2}\right)}{4 \pi \epsilon}\left\{\frac{p_{2}}{r^{3}}+\frac{p_{4}}{r^{3}}\left(\frac{l_{1}{ }^{4}-l_{2}^{4}}{\left(l_{1}^{2}-l_{2}^{4}\right) r^{2}}\right)+\ldots\right.$.
where it is interesting that $\left(l_{1}-l_{2}\right)\left(l_{1}+l_{2}\right)=l_{1}^{2}-l_{2}^{2}$

correrp toll. of Striation p. 177
and that this reduces to $l_{1}{ }^{2}$ wan $l_{2}=0$
This alsotetts wo that straiten's $2 \ell_{1}$ is distance between outer charges. ie. atsigititpoge, l is for dipole \& $2 l$ is quachupole spread.
$43 / 65$
The other way to say this is that for pt charge at $z=+l$, we hove

$$
\varphi(r, \theta)=\frac{q}{4 \pi \epsilon} \frac{1}{\sqrt{r^{2}+l^{2}-2 r l \cos \theta}}
$$

and for $r>e$

$$
\begin{aligned}
\varphi(r, \theta) & =\frac{q}{4 \pi \epsilon}\left\{\frac{1}{r} \sum_{n=0}^{\infty} P_{n}(\cos \theta)\left(\frac{l}{r}\right)^{n}\right\} \\
& =\frac{q}{4 \pi \epsilon}\left\{\frac{P_{0}}{r}+\frac{P_{1}}{r}\left(\frac{l}{r}\right)+\frac{P_{2}}{r}\left(\frac{l}{r}\right)^{2}+\cdots\right\}
\end{aligned}
$$

for $n \gg l$, get affectively only $\frac{P_{0}}{r}$ which con be regard el as conrenpondig to a zerocrder. uniltipiter.

Istorder place $(-q)$ at $r=0 \quad$ ie. haveadipole
This cancels zero order term

$$
\varphi(r, \theta)=\frac{q l}{4 \pi \epsilon}\left\{\frac{P_{1}}{r^{2}}+\frac{P_{2}}{r^{2}}\left(\frac{l}{r}\right)+\frac{P_{3}}{r^{3}}\left(\frac{l}{r}\right)^{2}+\cdots\right\}
$$

To get an axial quadrupole, place $+q$ at $z=-l$ andantur $-q$ at
This record dipole hes $\varphi(r, \theta)=\frac{\alpha l}{4 \pi \mid E}\left\{\frac{P_{1}(\pi-\theta)}{r^{2}}+\frac{P_{2}}{r^{2}}\left(\begin{array}{l}\frac{l}{2}\end{array}\right)+\cdots\right.$
and we note that P_{1} is add, iv. $\cos \theta=-\cos (\pi-\theta) \xrightarrow{\text { of will cancel }}$
2uaros P_{2} is rem atc.
P_{3} is odd
\therefore forquachupole $\varphi(r, \theta)=\frac{2 g l^{2}}{4 \pi E}\left\{\frac{P_{2}}{r^{3}}+\frac{P_{4}}{r^{3}}\left(\frac{l}{r}\right)^{2}+\cdots \cdot\right.$ $\lessdot \quad$ see left for displace f wore fully form center
other quodrupole is ${ }^{\oplus}$ © 9

But (4)

is not highoorder than quadrupoles becoure these is no carcellation of secoud order terms, there is no thid limiting process, ouly three seconl orden liminting process whos sfete will superpose.
unetsee P p 411 an
$2 / 3 / 65$ What would be a (third order) octopole?
Not just any superposition of quadrupole, just as quadrupole cannot be just any superposition of dipoles.
Toget axial actopole, first displace quadrupole away pom origin $\pm{ }^{2} l_{2}$

- e_{3}

$-\mathbf{l l}_{3}$
$+\mathrm{O}_{4}$

$$
\begin{aligned}
& \quad \frac{P_{0}}{2}+\frac{P_{1}}{2}\left(\frac{l_{1}}{2}\right)+\frac{P_{2}}{2}\left(\frac{l_{1}}{r}\right)^{2}+\frac{P_{3}}{r}\left(\frac{l_{1}}{r}\right)^{3}+ \\
& -\frac{P_{0}}{2}-\frac{P_{1}}{2}\left(\frac{l_{2}}{2}\right)-\frac{P_{2}}{2}\left(\frac{l_{2}}{2}\right)^{2}-\frac{P_{2}}{2}\left(\frac{l_{2}}{2}\right)^{3}+ \\
& -\frac{P_{0}}{2}-\frac{P_{1}}{2}\left(\frac{l_{3}}{2}\right)-\frac{P_{2}}{2}\left(\frac{l_{3}}{2}\right)^{2}-\frac{P_{3}}{2}\left(\frac{l_{3}}{2}\right)^{3-1} \\
& +\frac{P_{0}}{r}+\frac{P_{1}}{2}\left(\frac{l_{4}}{2}\right)+\frac{P_{2}}{2}\left(\frac{l_{4}}{2}\right)^{2}+\frac{P_{2}}{2}\left(\frac{l_{4}}{2}\right)^{3}+
\end{aligned}
$$

add

$$
\begin{aligned}
& 0+\frac{P_{1}\left(\frac{l_{1}-l_{2}}{r}-\frac{l_{3}-l_{4}}{r}\right)}{}+\frac{P_{2}}{r}\left(\frac{l_{1}^{2}-l_{2}^{2}-l_{3}^{2}+l_{4}^{2}}{r^{2}}\right) \\
&+\frac{P_{3}}{r}\left(\frac{l_{1}^{3}-l_{2}^{3}-l_{3}^{3}+l_{4}^{3}}{r^{3}}\right) \\
&= \frac{P_{2}(\theta)}{r}\left\{\frac{l_{1}^{2}+l_{4}^{2}-\left(l_{2}^{2}+l_{3}^{2}\right)}{r^{2}}\right\}+\frac{P_{3}(\theta)}{r}\left\{\frac{l_{1}^{3}+l_{4}^{3}-\left(l_{2}^{3}+l_{3}^{3}\right)}{r^{3}}\right\}
\end{aligned}
$$

Whereas for $(-,+,+,-)$ below the line, would get

$$
\frac{-P_{2}(\pi-\theta)}{r}\left(\frac{l_{1}^{2}+l_{4}^{2}-\left(l_{2}^{2}+l_{3}^{2}\right)}{r^{2}}\right)-\frac{P_{3}(\pi-\theta)}{r}\left(\frac{l_{1}^{3}+l_{4}^{3}-\left(l_{2}^{3}+l_{3}^{3}\right)}{r^{3}}\right)
$$

Andbecouse P_{2} is even $P_{2}-P_{2}=0$
but P_{3} isolde, ginury

$$
\frac{2 P_{3}(\theta)}{\Omega}\left\{\frac{l_{1}^{3}+l_{4}^{3}-\left(l_{2}^{3}+l_{3}^{3}\right)}{r^{3}}\right\}
$$

supper $l_{4}=0$

$$
\begin{aligned}
& \begin{array}{l}
l_{2}=l_{3}=l \\
l_{1}=2 l
\end{array} \\
& \text { Then } l_{1}^{3}+l_{4}^{3}=8 l^{3}-\left(l^{3}+l^{3}\right)=6 l^{3} \quad \text { than get } \frac{12 q l^{3}}{4 \pi t}
\end{aligned}\left\{\frac{p_{3}(\theta)}{r^{4}}+\frac{P_{5}(\theta)(l)}{r^{4}\left(r^{2}\right)}\right)
$$

higgen probbem is that not sure or/e is big enovigh to mothe thin effer importain. Closed freld conce h way be simpler woy of presenting if althon $1 / 2^{3}$ still apples to gradupole aspect.
dyole story perkers to censider loyes. Noybe bes jus to conrider \& compute fora friile muther of cells.
plro note
preedit that toward ayonal side of nuclens one gets no appreciable leadriy positivity
$23 / 65$
Tor motoneuron wog peak, for wares new ron, we hove to consider radial type field like curve F of Fig. 10 of Biophyp. I paper, but for more distant ones, is nearest neighbors, we may already be getting into the $\left(\frac{1}{r^{3}}\right)$ domain whereas the numbers of neiglivors per shell of neighbors should go up as r^{2} (spherical surface area) to limits of nucleus

This, we might have 4 neighbors at n_{1} and 4 more of 1.414Ω,
But their contrifintion would he $\left(\frac{1}{1.414}\right)^{3}=\left(\frac{1}{2}\right)^{3 / 2}$
pos. peak
For dipole population, not sure how hin l is of how coplanar the
1111111 dipoles current lis limited by fret that the
1111111 current flow is very small until impulse

1い111
 gets close to hittoc. Waghe for last node (?M spike?)

Consider $\frac{\cos \theta}{r^{2}}$
where distance effect is $\frac{1}{r^{2}}$ patcall les numb r of calls miveses s^{2}
\therefore friitermipher of cells comes in phis the $\cos \theta$ foetor
\therefore Integrate for $\cos \theta$, where get more cellifor angled cosine. Begnis to lead to the Helmholtz shell story.

	peake	pelk o
6501	300.	70.
6502	567.	64.

(5)	415	63
(6)	295	82
(7)	345	54

$2 / 4 / 65$

Succenful first CRT with						WxP752C	
NSET	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
6501	500.	40,000	25.	2.	5.	1	10.
6502	500.	40,000	25.	2.	1.	.1	10.

wheren for
WXR 751 C

(5)	1	1	50.	1	$R_{5} R_{3}$	$R_{5} R_{4}$	R_{6}
(6)	11	1	50.	1.	5.	.05	10.
(7)	11	11	50.	2.	2.5	.1	10.

Now 6501 resembles old (6) with spike follning too fost The foct that R_{3} is halved mescos the spine sise faster o peak earlien " "" "R "doubled moker I pecksualler becanse it mokes The quendury of ε loy g more effective.
New 6502 somenthat sesembles (7) +(5) with peak ligher
Here also, R_{3} halued mohes sposhe rise footer \& peak earlier While R_{5} reducel (fortor2.5) tends to delay of pesinit highor ε

Sutuitively: Tureshold $\approx R_{1} / R_{3}$
Clso Riseo/spike $\approx R_{2} / R_{3}$

If R4 ismade very small, E tonds to decay passively accordinj to P_{3}
-T should lost longer the orly weakly quenched hy gof
This also pernit gy to grow lange witdont pullung down है.
If R_{5} is male small, this should deloy onset of g, while non zero R6 still pesmits some antocataly in graitith.
$2 / 4 / 65$

$$
\begin{aligned}
& \frac{d V}{d T}=-V+(1-V) \varepsilon-(V-\beta) g+\Psi \\
& \frac{d \varepsilon}{d T}=k_{1} V^{2}+k_{2} V^{4}-\left(k_{3}+k_{4} g\right) \varepsilon \\
& \frac{d g}{d T}=\left(k_{5}+k_{6} g\right) \varepsilon-k_{1} g
\end{aligned}
$$

For small v where $k_{2} v^{4} \ll k_{1} v^{2}$ and when $g=0$

$$
\text { Then } \begin{aligned}
& \frac{d \varepsilon}{d T}=k_{1} V^{2}-k_{3} \varepsilon \\
& \frac{d V}{d T}=-V+(1-V) \varepsilon+\psi
\end{aligned}
$$

Where it can be seen that excitability miceares with $k_{1} / k_{3}{ }^{i}$
Note that $\frac{d V}{d T}=0$ at peak of spike and a fountel st-st. $\frac{d \varepsilon}{d T}=0$ of peak of ε and of finial st.st, $\frac{d d}{d t}=0$ ot peak e of \mathcal{O} and at find st st.

$$
\begin{aligned}
\rightarrow \varepsilon & =\frac{k_{7} g}{k_{5}+k_{0} g} \\
\rightarrow \varepsilon & =\frac{k_{1} v^{2}+k_{2} v^{4}}{k_{3}+k_{4} g} \\
V_{s s} & =\frac{\varepsilon+\beta g+\psi}{1+\varepsilon+g}
\end{aligned}
$$

6501
Alsotyonewith $V=-.5 \quad K H V S D=0, K L A M P=+1$ bultry

6502

KLARS -1
$\begin{array}{llll}0 & -.1 & .28 & .03\end{array}$
Q

$$
-1
$$

2/4/65 Design nat sums with WXR 752 C

SET	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
6501	500	40,000	25	2.	5.	1	10
6502	11	4	11	11	1.	11	11
6503	11	11	11	001	5.	11	10
6504	11	11	11	20	1.	11	\cdots
6505	11	11	11	11	0.1	11	\cdots
6506	11	11	11	11	11	.01	11
6507	11	11	11	01	11	11	11
6508	11	11	11	11	.01	11	11
6509	11	11	11	11	11	.001	11

Doeach of these for $V=.2$

$$
\begin{aligned}
& 7 \times 3=21 \\
& 2 \times 2=\frac{4}{25} \times 10=250 \text { secs est. }
\end{aligned}
$$

Tor voltage clamp at $V=0.5$

	peak	$k T$	late C a $k T=90$	
6501	-15	12	+18	-5.6
6502	-21	20	-16.6	
6503	-30	12	+18	
6504	-43	24	-24	
6505	-50	35	-48	
6506	-50	30720	-50	
6507	-51	$k l a$	-57	
6588	-52	$60-90$	-52	
6589	-52		-52	

$2 / 5 / 65$ d $2 / 8 / 65$
Todoy noticed the tially completed figunes for the Theoretical Potential Dist-poper of decided to see what 1 can do obaivget Mis poper on also. Reper bok to proge 19: here devotad por of wedn to kinctis, leri was led to test the advantoge of
wew $R_{5} \& R_{6}$ lers coustromied thon old $R_{5}\left(R_{3} t R_{4} g\right)$ and poppered WXR 752 C for this. First remets promiro. Nat rums suafued dae to sameone elres goof a' compuiter;' mis resobmit

2/8/65 WXR 752C worked for 6503-6509 क somersted $/ 6501$ क2

40

even
\$hadoe lowest onder mist he Pif or hister order
However Note, This cancellation occms only when the three quadrupoles are of exacifly tre same mornent \& exaity or thogonal!.
Qlso, when $r \approx$, have hizher order terms as well.

I had not expected thix, bu it seems that Three P P_{2} fields arrange wim orthogonal áfes, addup to gero everyanthere I, see proof on praze 45

210
Think anon quadrupole field $\psi \propto \frac{P_{2}}{R^{3}}$
Where $P_{2}(\cos \theta)=\frac{1}{2}\left(\cos ^{2} \theta-1\right)$
Thus $\operatorname{for} \theta=\operatorname{oor} \pi$, get $\frac{1}{2}(3-1)=1$

$$
\begin{aligned}
& \text { for } \theta=\frac{\pi}{2} \text {, get }+(0-1)=-1 / 2 \\
& \text { for } \theta=55^{\circ} \text { or } 125^{\circ} \text {, } \operatorname{set} \frac{1}{2}(1-1)=0 \\
& \text { a argos } \sqrt{\frac{1}{3}} \\
& \sqrt{033}=0.577 * 0.58 \text { for } \cos \theta \\
& \therefore \theta \approx 54^{\circ} 45^{\prime} \text { or } \approx 0.95 \text { rations }
\end{aligned}
$$

Consider Threequadrupoles orthogonally arranged
Alorglach axis have $\frac{+1}{\varepsilon^{3}}$ due to quadrupole of that ax is and hove $2\left(-\frac{1 / 2}{r^{3}}\right)$ due to two annuli of Which addstozero
On on equator get $-\frac{1 / 2}{r^{3}}$ from annulus and if 45° from twopoles $\frac{2\left(\frac{+1 / 4}{r^{3}}\right)}{0}$

$$
\begin{array}{lll}
40^{\circ} & .38 & 30^{\circ} \\
50^{\circ} & \frac{.12}{.525} & 60^{\circ}=\frac{.125}{.50}
\end{array}
$$

Presumably the poinsequidistont from three proles are at $54 t^{\circ}$
\therefore seams to be zero everywhere note p. 1280 of wove + Fshbech here each contithites zero.

211165
attempl to summonize 6501-6509 of WXR 752C
See pp, 33, 37,39
Of these 6502 is probobly the Cest spike
Someintut smimilar to older (5) and(9) of w WR 751 C sorios
Inall coses, superiointy sel.to consins seens attricutable to (other thms beny equal) to sualler volue for R_{5}, which taids to deloy ouset of I peak, lit keys Ip peaksmall.
\&lets Epechsall \& lets espoh get lorge.
The alternative coses, like 6503 of later, reduced R_{4} mokes E peok latert thon Vpeck and these two peoks foll rother closely together. see esp. 6505
$6504 \& 6505$ represens succesifle seductioin of R_{5} whoch delon the growth of g. 6505 is abesly tooplat tappel spike.
6506-6509 areall rubed on' first conse is reduced R_{6} byfortor of 10, which wahes ontocitalytic grow th decur mindr too loteor not at all.

Coild try Effet of haluniz R_{6} in $6503+6504$
\rightarrow to become. 05 or $5-1$
Clooty $(25,1, .55, .05,10)$ Couldabo try halwny
Anodal: set $g=0$, set $\varepsilon \simeq \frac{R_{2}}{R_{3}} V^{4} \simeq 1600 \times V^{4}$

$$
\begin{aligned}
& \left(35 y^{2}-3\right)\left(y^{2}-1\right)=35 y^{4}-38 y^{2}+3 \\
& \therefore 35 y^{4}-30 y^{2}+3=8 y^{2}+\left(35 y^{2}-3\right)\left(y^{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{14}=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& \begin{aligned}
P_{4}\left(\theta_{1}, \theta_{1}+\theta_{3}\right) & =\frac{1}{8}\left(35\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}-30(1)+9\right)\right. \\
& =\frac{35}{8}\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}\right)-\frac{21}{8}
\end{aligned}
\end{aligned}
$$

$Z_{\text {ce }} \gamma_{1}=1, \gamma_{2}=0=\gamma_{3}$, get $\frac{35-21}{8}=\frac{14}{8}=1.75$
For $\gamma_{1}=\gamma_{2}=\sqrt{2} / 2, \gamma_{3}=0 \quad$ get $\left(\frac{35}{8}\right)\left(2\left(\frac{4}{16}\right)-\frac{21}{8}=\frac{17.5-14}{8}=\frac{3.5}{8}=0.478\right.$
$70 \gamma_{1}+\gamma_{2}+\gamma_{3}=\sqrt{0.333}$ get $\frac{35}{8}(0.333)-\frac{21}{8}=\frac{10.67-21}{8}=-\frac{8,33}{8}=-1.17$
$3 / 9$
Perhaps shall also consider Pit term nu detail

212165 Relerbod to $.41 \quad P_{2}$
Here is mot that
Here is proof that $\frac{P_{2}}{r^{3}}$ tom canals ow for the three or tho r^{3} nelly assanged quadruples of equal moment.

Fare eight octants of spherical surface Take an arbitiorypoint in the octant

Note that $P_{2}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)$
let $\gamma_{1}=\cos \theta_{1}$
$\gamma_{2}=\cos \theta_{2}$ whish also holpen to be the
$\gamma_{3}=\cos \theta_{3}$ directional cosines of the vector in question
Now, the sum of these three contributions is

$$
\begin{aligned}
& \frac{1}{2}\left\{3 \gamma_{1}^{2}-1+3 \gamma_{2}^{2}-1+3 \gamma_{3}^{2}-1\right\} \\
= & \frac{1}{2}\left\{3\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)-3\right\} \\
= & 0 \quad \text { beconsed } \gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}=1
\end{aligned}
$$

identically.
Hence, lonestorder tom becomes
640.27

$$
\frac{2 l^{2}}{4 \pi \epsilon}\left(\frac{l^{2}}{r^{5}}\right)\left\{P_{4}\left(\theta_{1}^{*}\right)+P_{4}\left(\theta_{2}\right)+P_{4}\left(\theta_{3}\right)+\left(\frac{l}{r^{2}}\right)^{2}\left(P_{6}\right. \text { et }\right.
$$

Chat dromatologid cells/munlength
$30 / \mathrm{man}$ nevoubls $60 /$ mion near undtle

Ted Chomadalysis density $160 / \mathrm{mm}^{3}$ a LL
$\sqrt{180}$ pr pomcubinots
batrour olls
Thismulens continis $630 / \mathrm{min}^{3}$ belorg to Ther unusdes.

$2 / 12 / 65 \times 2 / 15 / 65$
Saw Vau Buseen on 2/1165, Phil on 2/12/65
Ven Buen found gastror nudous about 9.9 mun lorg
.8 mm dorsonential
Nundor of mits (lang motanmow)
.6 min lateral
He essur di insines to ono
sevolution and thms got a derisity of $830 / \mathrm{mm}^{3}$
Inot that for redurgaller poollebpiped, vol $\approx 9.9(.48) \approx 4.75 \mathrm{~mm}^{3}$

$$
\approx(4)(4.95)(+126) \approx 2.44 \mathrm{~mm}^{3}
$$

Not suse how this led to his densitity fisure, unbers he was michulnoy small mostonewron.

Hegore arenger distonce hetween cunter as 125μ from the density figure. Not suc how hegit fisme, but a rough/fyene would lee $\left(\frac{4}{8} \pi r^{3} \approx 4 r^{3} \approx \frac{1}{2} d^{3}\right.$,

$$
\therefore d \approx \overline{2 V} \text { wher } V=\text { velpmall. }
$$

tvolperall is $\frac{1}{630} \times 1.6 \times 10^{6} \mu^{3}=1.47 \times 10^{2} \mu$

$$
\begin{aligned}
& \text { butiffolperallis } \frac{2.44}{370} \mathrm{~mm}^{3}=6.6 \times 10^{6} \mu^{3} \\
& d=313.2 \times 10^{2}=
\end{aligned}
$$

$$
\therefore d=\sqrt{13.2} \times 10^{2}=2.36 \times 10^{2} \mu
$$

Verpronghly, distance over woroch potentiels palls to 10% is $500 / \mathrm{M}$

Rel magnitudes, in Vou Buasens dota
leaduy post tunds to be 0.4 to 0.8 mV
vegpeale 1.5 to may $/ 3.7 \mathrm{mV}$
The ratio tands to be inthe range $\frac{1}{3}$ to $\frac{1}{5}$
With Phil Nelson's doeta
moxloodim Opols $\sim 100 \mu V=0.1 \mathrm{mV}$
theres peeke neg is 2 mVon coconvonely yone
(Apech soneturingetar)
or 1 mV virem not warg close
\therefore Unitratio $\approx \frac{1}{10}$ lo $_{0} \frac{1}{20}$

foolinis with Van Buren at his propared figmes, twas diroppointed not to fuid the easly poz. Fwh ones to her at greater depth, as would hove expected for a dipole. But he soyp he does net actually obseme the proths of the ayons. (Plil thinh Theyaneleont in cando-letral divection) Also, with whole trad, there may be sofficion poz. dwe to approoch of mipube forther down! cer when near first node, one nizent expect clossical triphosic, ex of tha population.

Phil's unit data was more kopeful. It did look as if the Θ was may slizhtly dorsal to peak(neg). Clso Θ seenil smaller as passed peah veg in the ventio-coulal direction: in the "A region" The leading pos tends to get swellowed in A veg, pech o theer very slogh pos. seen could he due to somire phose to appo
 spitie mighe work orf faisly well, Cont of carnse,
as one mones antalory dyon, there scould ohvarg be a frief sousce phase bopore sinkphore.
A ote

$$
\begin{aligned}
& \text { Sneremints in vol } \propto r_{3}^{3}-r_{2}^{3} \approx r^{2} \Delta R \\
& \therefore \text { opral nicrements } \\
& \Delta r=\frac{\Delta V}{r^{2}}
\end{aligned}
$$

Counnerts Anodel break worked 0.k. anny $\frac{\varepsilon=100}{g=0}$
6511 selto 6502 has R_{5} and R_{6} reducel to half.
Main ofle wisto reduce and delay g peak

* Spine did not retum to zes ${ }_{2}$ roseagain after droppoos to 575
* This might be a model to produce suogis

6512 sel to 6511 has R4 reduced to half. Gquenches E cens ffectioly Epeakhizhor g peak highor spoike fell to zero a 61
6573 sel 50653 has R6 retucd to thaff. This

6576 rel to 6515 , R5 ishalved;
6517 adt 0516 , R_{6} is neluced
6521-6524 sedvenig R_{1} hodvery little offect.
6525-6529 increasing R_{3} reduces and delays Epeek
6531 R_{2} nücrecosed, fostg spike
slouler spil
Geak,
Ipeak
6532-34 R2 decreased, slouler spithe
6526 is very sumiles to 6532
6532 with $R_{2}=20 \times 10^{3}$ looks rather good slower spite

4/15/65 6511-6534 with WXR752c
see pp 42-43 \& 39

Compere $\dot{8}=R_{1} V^{2}+R_{2} V^{4}-\left(R_{3}+R_{4} g\right) E$
$\left.\begin{array}{r}6502 \\ 6513\end{array}\right\}$ at first at $K T=35$ and $K T=40$

$$
\dot{V}=-V+(1-v) \varepsilon-(V+.1) g
$$

Corgere

$$
\begin{aligned}
& (.37) 86-(.73) 64=32-47=-15 \\
& (.37)(315)-(.73)(183)=116-134=-18 \\
& (.75)(7.6)-(.35)(55)=5.7-19.3=-13.66 \\
& (.75)(80)-(.35)(200)=60-70=-10
\end{aligned}
$$

Comprere

In 6502 , the $(1-v)$ E terma dropsob byator 5.6 , ant the $(v+0) g \log 2.6$ $\ln 6513$

2/16/65 General Comments upon 6501-6534

At is interostry that 6502,6513 and 6521 hove very similar spikes eventhough the $\varepsilon+g$ peaks are rather differen. This is worth looking vito

	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}
6502	500	40,000	25	2	1	.1	10
6513	11	11	11	.2	5	.05	10
6521	100	11	11	2	1	.1	10

actually 6521 is essentially the same as 6502 , be 6524 is

* But with 6502 \& $6521-24$
V pah n $=, 980$ ot 25 Epoch ≈ 567 at 27 Speck ≈ 64 at 35
Noserowith 6513

$$
\begin{array}{llll}
1928 & 25 & 553 \text { ot } 29 & 203 \text { ot } 37
\end{array}
$$

ire. G peak is three times as large a little later

$$
\text { at } K T=35 \text { it is } 194 \text {. exactly } 3 \text { then }
$$

Appersutly triple (g with $\frac{R_{4}}{10}$ reduces Eqvench by that amount who dh compensates or triple Vquendy,
This con be seen approx My look nog at already plotted curves of $e, ~ 99$ in $6502+6503$, Where 6513 she ter than 6503 iso in 6502 Eisquonched foster thou V 6514 wave lexeme R 5 too ell

Actually 6513 is lether thon 6574
as a code of shore overlop of 4 as a cade of strorg overlop of ε of
Narriund Aude KHVSD $=1$
6513 with intidultaige of 05, $010, .15$ 6502
Woth of abone for $N T=150$ with $K N / S D=1$
6532 lhe 6502 with $R_{2}=20,000$ Zabo 6543 Qhe 6513 mith $R_{2}=20,000$
varo 6521 fa thasholles

$$
\begin{array}{ccccccc}
R_{1} & R_{2} & R_{3} & R_{2} & R_{5} & P_{6} & R_{7} \\
6532 & 500 & 20,000 & 25 & 20 \theta & 1 & .1 \\
6543 & 500 & 20,000 & 25 & .2 & 5 & .05 \\
\hline 10
\end{array}
$$

2116165
It is tangting to ty for for a curve tectween $6513+6514$

$$
\begin{aligned}
\text { Thywith } R_{5} & =2.5 \\
\text { dro } R_{u} & =1
\end{aligned}
$$

$$
\text { aro } R_{4}=1 \operatorname{or} 0.5
$$

This should avoit delayno g as sumich as in 6514
hes- moke wa little lates thonin 6513
The infportauce of $R_{4}=0.2$ is that this permits larger and E, which works well only ify
Loolening a proze 52 compornig $6502\left(R_{4}=2\right)$ with $65 B\left(R_{4}=.2\right)$ it is clear that 6513 oltains folling V by opposnig effects of large ε dind ge, whos 6502 It heppons that $(1-v)$ en $(V+.1)$ goth foll rougrly to hoff for 6513 fom $K T=35$ to 40 gitsef is neorly courtaw, while Esoes to $1 / 4$.

Should rum 6532 for a longer time
also rum modi of 6513 with $R_{2}=20,000$
Wutereting to compare thresholds of 6513 f6502 of alro propofation sefety foctor, which

Abrealy thied anotal mistial contition $V=-.5 \quad \varepsilon=100$ whoch worlod well

$$
\begin{aligned}
& \varepsilon=25, \quad V=-35 \\
& \left.\varepsilon=50, \quad V=\left(\frac{1}{2}\right)^{1 / 4}-.5\right)=(.84)(. .5)=-.42
\end{aligned}
$$

$2 / 16 / 65$
With read to anodal applied current st. st. Tram opted convent st st. hove

$$
\begin{aligned}
& \psi=V-(1-V) \varepsilon+(V-\beta) g \\
& \text { or } \frac{\psi}{V}=1-\left(\frac{1-V}{V}\right) \varepsilon+\left(\frac{V-\beta}{V}\right) g
\end{aligned}
$$

Now, for anode st.st., assume $g=0$ and $y=-V$, is opposition quantity
Then $\frac{\psi}{V}=1+\left(\frac{y+1}{y}\right) \varepsilon$
Now, if $\varepsilon_{\text {sst }}=\frac{R_{2}}{R_{3}} V^{4}$, get $1+\frac{R_{2}}{R_{3}}\left(y^{3}+y^{4}\right)$ whereas if $\varepsilon_{\text {stat }}=\frac{R_{1}}{R_{3}} r^{2}$, get $1+\frac{R_{1}}{R_{3}}\left(y^{2}+y\right)$

$$
\begin{aligned}
& \frac{R_{1}}{R_{3}}=\frac{500}{25}=20, \text { i } y=0.1 \text {, get } 1+2.2=3.2 \\
& \frac{R_{2}}{R_{3}}=\frac{40.000}{25}=1600, y y=0.1, \text { at } 1+(1600)(.0011)=2.76 \\
& 1.066
\end{aligned}
$$

6502 worth $V=.05$ at $K T=90$

$$
\begin{aligned}
& \text { for } V=.05, V^{2}=.0025, \quad R_{1} V^{2}=\frac{500}{400}=1.25 \\
& V^{4}=\frac{1}{16 \times 10^{4}}, \quad R_{2} V^{4}=\frac{4 \times 10^{4}}{16 \times 10^{4}}=0.25 \\
& \therefore R_{1} V^{2}+R_{2} V^{4}=1.50 \\
& \text { Whereas }-R_{3} \varepsilon=(-250)(.059) \approx-\frac{6}{4}=-1.5 \\
& \varepsilon g \approx 36 \times 10^{-5}, \therefore R_{4} \varepsilon g \approx 10^{-3} \\
& \text { also } \varepsilon \dot{V}=-V+(1-V) \varepsilon-(V+.1) g \\
& =-.05+(.95)(.059)-(.15)(.006) \\
& =-.050+.056-.0009
\end{aligned}
$$

whereas for $6513 \quad V=.049, \varepsilon=.056, g=.028, \varepsilon g=.0016$ $R_{4} E g x .008$

$$
\begin{aligned}
-R_{3} \varepsilon & =(-25 .)(.056)=1.4 \\
-R_{3} \varepsilon & -R_{4} \varepsilon g \approx-1.48 \\
\text { Also } \varepsilon \dot{v} & \approx-.05+(.95)(.056)-(.15)(.028) \\
& \approx-.05+.054(-0042 \text { close. }
\end{aligned}
$$

Note That i $V \ll 1 \quad \frac{1}{V(1-V)} \approx \frac{1}{V}$ and $\frac{R_{1}+R_{2} V^{2}}{R_{3}} \approx \frac{R_{1}}{R_{3}}$
Since $V=\frac{R_{3}}{(1-V)\left(R_{1}+R_{2} V^{2}\right)}=\frac{R_{3} \quad \sin \log V \approx \frac{R_{3}}{R_{1}}}{R_{1}\left(1-V+\frac{R_{1}\left(R_{1}\right.}{\left.\left.R_{1}-V_{3}\right)\right)} \sec p .58\right.}$
$2 / 18 / 65$
Got bock new 6502-6543 saris (WXR 752C) testing threshold, anodal brede etc.
miteresting That 6502 threshold $₹ V=.05$ wheres $652 /\left(R_{1}=100\right)$. The shod $>V=.05$

$$
\angle V=\cdot 1
$$

go sone very slow subthseshodds, may weed to reexamien with longer NT O HT A INSTE?

General analysis - We con estimate theseshold condition with $\dot{V}=0=\dot{\varepsilon}$

$$
\begin{aligned}
& \dot{\varepsilon}=0 \text { means } \varepsilon=\frac{R_{1} V^{2}+R_{2} V^{4}}{R_{3}+R_{2} g} \quad \text { and } g \text { small } \\
& \dot{V}=0 \text { means } \varepsilon=\frac{V+g(V+.1)-\psi}{1-V} \text { seep.35 }
\end{aligned}
$$

For $\psi=0$ and $g=0$, we get simply

$$
\varepsilon=\frac{V}{1-V}=\frac{R_{1} V^{2}+R_{2} V^{4}}{R_{3}}
$$

Dividuy through by V^{2} we get the interesting segnisemi?

$$
\frac{\varepsilon}{V^{2}} \approx \frac{1}{V(1-V)}=\frac{R_{1}+R_{2} V^{2}}{R_{3}}
$$

which could be plotted as an intersection, where the soles of R_{1}, R_{2}, R_{3} con be easily di stinguistad.

From $\frac{1}{V(1-V)}=\frac{R_{1}+R_{2} V^{2}}{R_{3}}$
we con soy that $V^{*}=\frac{R_{3}}{R_{1}(1-V)\left(1+\frac{R_{2}^{2}}{R_{1}} V^{2}\right)}$

$$
\begin{array}{r}
\therefore V^{*}<\frac{R_{3}}{R_{1}} \text { whowor }\left(1+\frac{R_{2}}{R_{1}} V^{2}\right)>\frac{1}{1-V} \\
(1-V)^{-1}=1+V+V^{2}+V^{3} \ldots \\
\text { ie. cout } \frac{R_{2}}{R_{1}}>\frac{V+V^{2}+V^{3}}{V^{2}}
\end{array}
$$

see opproste
$\mathbb{H}_{\text {st }}=.06$, then $g_{s t} \approx\left(\frac{1}{10}\right)(.06)=.006$ which is corsect
Wheres $\varepsilon_{0 t}=\frac{V}{1-v}=\frac{.05}{.95}=.0525$

$$
\text { gest fron } 20 \text { ? }=.00525
$$

Than $g(r-\beta)=g(.15) \simeq .0008$

$$
\text { anl } \alpha=\frac{.0008}{.05}=.016
$$

7or 6502, $\begin{aligned} & \alpha \approx\left(\frac{1}{10}\right)(.05+.1)=\frac{.15}{9.95)} \\ &=0157 \\ & \approx .016\end{aligned}$
Neglect of $\mathrm{R}_{4} \mathrm{~g}$ causes only 10^{-3} enor latos
Xeagles of α conses 1.6×10^{-2} ersor foctor a. 1.6%

To restore finite of to avolysin, we can do this first to get vastunate

Then Estimate $=\frac{V}{1-V}$
and $\dot{j}=0$ would give gestimate from

$$
g=\frac{R_{5} \varepsilon}{R_{7}-R_{6} \varepsilon} \approx \frac{R_{5}}{R_{7}} \varepsilon \quad \text { var } R_{6} \varepsilon<R_{7}
$$

now, usnog this f, we con examine the following

$$
\frac{1+\alpha}{V(1-v)}=\frac{R_{1}+R_{2} V^{2}}{R_{3}+R_{4} g}
$$

where $\alpha=g(V-\beta) / V \quad$ where $\beta=-.1$

$$
\begin{aligned}
& \approx\left(\frac{R_{5}}{R_{7}}\right)\left(\frac{V}{1-V}\right)\left(\frac{V+.1}{V}\right) \quad \text { for } \psi \neq 0 \\
& =\left(\frac{R_{5}}{R_{7}}\right)\left(\frac{V+.1}{(1-V)}\right) \quad \text { oxheserso examples } \frac{-\psi}{V}
\end{aligned}
$$

2118165.

\therefore Cam to see that kinetics fail when, for example, $R_{2}=0$ ant $\frac{R_{1}}{R_{3}}<4$

Celso, if we require threshold below $V=0.5$ Then we con require $\frac{R_{1}+R_{2} V^{2}}{R_{3}}>4$ for $v=0.5$
or $\quad R_{2}>\frac{4 R_{3}-R_{1}}{.25}$
or $\quad R_{2}>4\left(4 R_{3}-R_{1}\right)$
or $\frac{R_{2}}{R_{3}}>16-4 \frac{R_{1}}{R_{3}}$
Pant Threshold at $V=0.1$
Then mishore $\frac{R_{1}+0.01 R_{2}}{R_{3}}>\frac{1}{.09}=11.11$
$R_{1} R_{2} R_{3} \quad R_{4} R_{5} R_{6} R_{7}$

" " " " .5+1 " " 6553

$$
.5+1 \quad 6554
$$

Now ratere R_{2} but leone ow R_{4} क R_{6}

Thrervolds
$.5-2 \cdot 4+5 \cdot 25+2 \quad .2+1 \quad .1+1 \quad .1 \quad .1+2 \quad 6560$
Trywith NT $=90, D T=.02$, NSTEP $=10, \quad V=$
6502 with $(.06, .05, .04, .03)$
6521 with $(.11, .10, .09, .08, .07, .06)$
$2 / 18 / 65$
Chedr over suns of plan nore If necesong to see how well can wob with R_{2}, R_{4} ad $R_{6}=0$ beheve it will work, but be luiited.
R_{2} adds stegtions to spike withow lusting
thresiold bo much.
$\frac{R_{1}}{R_{3}}$ sets Threshold
also sets shope of E peok.
ahdig R_{4} pennits quencho o/E peok addoy R_{6} permits steefer growth of O peck 6506-6509 attent to ned / N R_{4} ${ }_{6} 634$ provites some evidence on R_{2}

66
Plen tir. 2

4000 series releb/ to 6503
5000 serves releted to $6513 \$ 6514$
6000 series releb/to 6504
7000 seves relotes to

to complete 6502,6504 pir
Nood $R_{6}=.5$ odl 4 sempto conplete 6504,6514 peir
$2 / 24164$ wote pai of monscrys Porpaction po iboper yeitordoy! Plaming figures today.

$$
\begin{aligned}
& \text { 7g.1-A (6543) has (retonc of } 6513 \text {) } \\
& 500,20,000,25,0.2,5,0.05,10 \\
& \text { Upeak }=.901 \\
& \begin{array}{l}
\text { Epeoh }=298.7 \\
\text { gpoolr }=108.6
\end{array} \\
& \frac{\text { Ipeole }}{\text { Epeotr }}=0.364 \\
& >1 / 3
\end{aligned}
$$

7 7. $1-B \quad(6532)$
$500,20,000,25,2.0,1,0.1,10$

Must rum a new series on R.s starthin with 6532

$$
\text { wow } R_{4}=\frac{8,4,2,0.5,0.2}{10,5,0.2,10.1}
$$

Qso, series on R_{5}, usiog $6513 \% 6514$ (1) $6003-605$ add The casez $R_{5}=10,0.5,0.2,0.1$
Series on alro stuling woti 6532 , add coses $\mathrm{R}_{5}=$

6521 thuybbtel monly porvine for shogloth local shistoly mose " "bovethash bus still deay aborethush - splut $T=.9$
Mohe firme

$\sim .6$.10
$\sim .44$.17
. .225	.15
.135	.20

$2 / 25 / 65$
Referbodito p. 64 forteshing smoll R_{2}, R_{4}, R_{6}
6551 builds rother slovaly. Ty micrearon R_{1} to $.5 \times 10^{4}$
$\tan 6561$
6552 brilt Elorges heconse of smaller R_{3}, bustill too slan 6553 lorger Rs briet of to laze nel to E 6554 sumaller R_{7}
$6555 R_{2}=20,000$ profuced spitee wich folls versslowly.
try lorzer R5 of sualler R Pr
$1+2 \quad .5+1$
and would fayssly well rhould plot
6557 redued B_{1} by foctor of 10 not reysgead
$6558 \quad R_{6}=0.1$ hoel littlesffer ou early part, osmople be expected.
Wote: 6556 is a good spikewith $R_{4}=0=R_{6}$ 6561 moy lead to ove with Rizalea geisd?

Thus oupm missury oftas Caly. tip. Shetere man of thene notations were on thinownt.

In 4000 series
Pry from zero thrm 0.1
hod esontially no effer upon the sisingplose o/ the spithe or oppon ε ard $\$$ thsu $K T \geq 25$
smaller \& of becone sognfiron oxily
for $K T>26$ for KT 26
obtondy a $\varepsilon 6$
Qlso, note it peak qeepei then E peak for $R_{4}<5$. plot of" later " ". poon for $R_{4}>5$.
Perlopp conpere 4005 with 400
on moyhe 4000, 40044 ,
Do 4008 woth $R_{4}=1$
? Qlso do ansthen sisies lihe 4000 servies - forwhich $R_{6}=0$
$?$ Gho nuighty smaller R_{3} - with proportionately smallr $R_{1} * R_{2}$

The lorgenteffect is in f peak anglitutule

2/26/65 Anolysis of series 4000-7000 Related to 6503
Series 4000 varied R_{4} from zero to 20.
This documents what woos already leone from 655b. Namely, that with P4 zero, of camp pull E down directly o thus Eemidsup larger \& pills v down of hence Edourn, whereas, when Ry is large, of near setviry large becouse it puls Econ o it is the dropo/E, not the g which puls v down.
The effect of Pry zero could be exaggerated withe
suseller R_{3} also (ie. small self decoy)
$\begin{array}{ccccc}\text { tu the } 4000 \text { series } & R_{3} & \text { as in case of } & 6503 \\ R_{1} & R_{2} & R_{3} & R_{5} & R_{6}\end{array} R_{7}$

	peak F KT	Speak KT	Spark o KT			
4000	.924	25	606	30	1351	47
4001	11	11	596	29	962	43
4002	.923	11	571	4	546	39
4003	.11	11	543	11	390	37
1004	.921	11	435	27	159	34
4005	.901	26	208	26	40	32
4006	.878	27	139	26	27	33
4007	.838	29	83	27	18	35
4008	.917	25	374	27	105	33

$2 / 26 / 65$
Discumor of $R_{4}=0$ versus R_{4} large.
Have now shown that con get good spite either way. Whir $R_{4}=0, g$ pulls down v and v pulls down ε When Ry large, g pulls dover E and Expels do um V

* However, voltage clamping experiments require a sigmficant R\& term to pull E down. Note Ens v plots

Will modre fispore
Stell need 5006 woth $R_{5}=10$.

$$
\begin{aligned}
& \begin{array}{ll}
7 & 20^{\circ} \\
8 & 50_{0}
\end{array} \\
& g^{*}=\frac{k_{6} \varepsilon g_{2}}{k_{7}-k_{0} \varepsilon}
\end{aligned}
$$

* Note tri Ypoolr amplitude is roumuhobly sminibr

Theopso isprimarily upon Godeloy
Epeate $6514=$

$$
\underset{\text { or veld }}{\substack{\text { osper }}}
$$

cuts peed doon
cuts 1 peck doum
sucell R 5 mehes of pede leter

lets v become flat topped
$2 / 26 / 65$

$$
\begin{aligned}
& \text { 26/65 Look of } 5000 \text { series, relatt to } 651386514 \\
& R_{1} \\
& 500 \\
& 500
\end{aligned} 40000 \quad 25
$$

Obrionsly $R_{s}=0$ keops $g=0$ q we hane reduced protlem of gong topermonenty
$500 / \operatorname{hod} R_{5}=0.1$ setflat top spike

$2 / 2065$

pops Look at 6000 series, related to	6504			
R_{1}	R_{2}	R_{3}	R_{4}	R_{5}
500	R_{0}	R_{7}		
5000	25	$\cdot 2$	1.	10

$\begin{aligned} & 6000 \text { uses underquenched } \begin{array}{l}\text { Epoch }\end{array}=1038 \\ & \text { larger } R_{4} \text { or } R_{5} \text { would probolily cones this }\end{aligned}$

60031.0 ped $4 \times$ Epeak
$6004+6005$ terribly obmp foll 1 our
Conclusion is that large R_{6} con be used only if R_{5} ar l R_{4} are smaller.
Not suse that R_{b} is necessong: Its only important purpose would be that if we wain to use a small R_{5} to obtain deloy, and yet build up to a large prate, con ton use R_{6} for this. log. Sifwount g to dfot Fou tho ε, make Rologes 4 R 4 sidles

Conel my 7005 with $R_{7}=20$ Twrident not underquenched $\therefore O K$
$2 / 26 / 65$
fook of 7000 seríes, reletes to 6504
theme to 6000 seris
Moo with $P_{7}=0$, Grises topemans platean Bineffec is small up to spithe peak
7004 with $R_{7}=50$ was inlerquenched $R_{7}=20$ wrook (oscillatory spito)
7003 woth $P_{7}=5$ spibe fall veryshightly more ropidly thon 6504
7002 wark $R_{7}=1$ spikeflls a littlemore rapidly. Isemonislarse
7001 with $R_{7}=0.1$ spirestels aboltle moreropilly Iromans up militonlory
H ie. set P_{r} for refiactory peniod then set R_{5} / R_{7} and R_{6} / R_{7} for oppeok

Nergdeloy

Call these 6570), 2, alsotry

4100	4,000	5	0	10	0	10
11	11	11	11	20	11	11
611	11	11	5	5	0	10
7		1	10	5	0	10
8			5	10	0	10
9			18	10	0	10

$2 / 26 / 65$
6556 remm with DT=001, NSTEP $=5$
$656 /$ like 6551 with $R_{1}=.5 \times 10^{4} \quad$ Bymulte R_{5} titice
$6563 \quad 11 \quad 1 \sim 1 \times 10^{5}$
$6562 \quad-6552 \quad R_{1}=.5 \times 10^{4}$
6564 . 1×10^{5}
6566 lone 6556 with $R_{2}=.4 \times 10^{5} \quad$ o.k.

Qlso setup

$$
\begin{aligned}
& \text { Qeso setulp } \begin{array}{rl}
R_{7}= & 20 \\
7005 \text { with } R_{7}= & 1 \\
4008 \text { with } R_{4}= & 10 \\
5006 \\
R_{5}= & 20 . \\
5007 & \\
5008 & 50 .
\end{array}
\end{aligned}
$$

Also do 6521 with I.C. $v=.4$

$$
\begin{aligned}
& \alpha(0) \sqrt{2}+2), 9.908
\end{aligned}
$$

$$
\begin{aligned}
& 201 \times 12 \\
& \times 1
\end{aligned}
$$

$$
\begin{aligned}
& 201 \times 10 \\
& 14
\end{aligned}
$$

-

3/2/65 Today, concentrate on preparing notes for Cal. Tech lectures $3 / 5$ and $3 / 8$
Becoure sentreprints (Ojai of two Expo. Nerrol.), in place of course notes, best plan is to bose lectures upon the oe reprints, ant esp., upon the equations ave! figures contained in these reprints.
Also, con prepare ditto's of any supplementary
equations, which dittos con be sun off क\$ equations, which dittos can be sun off at
Col. Tech.
©. Lecture I - To he based on Ojai reprint.
Lectuar II - to pick up bases of est. I parang. Use p G.H.I sumbitear of also olestracterserit fender

* Phil Nelson sen over tracers showing That The dipole aspect for single motoneuron leadro pos. ip pretty well nistonned li goof deeper. (ie. there still a little early \oplus pres in ably
due to more dor tow ninths in axon bit main port twas over.

Telephoned ferbel, jul it was difficult to assonze a nesting esp. with him of Moore of Seqchndo. Ended up postfromnty this. May see then as Gordon Conference?
Then it fund on that \& did spend a lew hours of UCLA because Fender drone me over when he wen to see Bullock ant Thorson

3/12/65
Returseed from Cal. Tech trip.
Lecture I was probably O.t6.
Lecture II not thorongicly repand. Too much jumpmiz aromas, although this was of minters to some students.
But f came to realize that for a come, a lecture probably should plod more slowly and carefully througle the essential details than 1 have become accustomed too for seminars etc. * The students sulaould be able to produce a coherent set of notes from the lecture. Easiest, ofcounse, if one provides them with ditto outline or notes, which con he prepared by hand.
Thy gone me a ditto by Benson, WcCamn of Taylor, for using the Perkel program for neural network modeling, but taboo work Fender also bought ant some of the baser difficulties of the Peskel program. Perkel focuses on "time of firing " and uses nistontomern voltage deranges partly for converneñce: if it so above turesciold thine of firing is green immediately. Threshold seconeny is treated as a simple exponential.
Also a ditto on BLODI - Blocs Diogion transfer function program from Bell hals.

Decisled to show this to Moves.
also talked with Dick Wank oftix Strnmwasser

Tom Reese also observed some pocculiar cupping of newsous, in The ragron (setellites) sursonin glomesuli.

with syapses on the outer cell
He is Pouderni what frumotion this could hove?

Hayle we should try to write a Mont note woth thee anthors, pointing on thit we are condemins several distunct sources of information
(1) Wover us tuine o depsth
(2) fiterp ae extracell curren flow
(3) (3) Jontfocts of (a) Period III osientation
(b) Porood III unital?

Boob4,, $.57(8 / 24 / 64)$
(c) Corsequen groumle implicotion requisiog granule dentritic depolarization
(4) \therefore postmblete E from mitral sec to gronule dendits. slow fizzle responne,
dhurgurodr from granme en intes to unitralsec.
(5) Tom Rese hos observed such syuopses.
$3 / 15 / 65$
attended Tour Reese's 9:00 AM lecture on histology of Qefactory Bulb. The most important point for me ant Gordon is that he has now observed several cases that look like synapses from mitral secondary dendrites to neighboring structures which could very likely be spines (genminles) of granule cell dendrites. Apter this semniar Tom come over to my office to learn what Gordon and I had been postulating ofow dendrodkutric synopses lotioern mitral secondaries and granule dendrites. The orientation of a synapse seems to he firstly widely accepted as howno the vesicles chinterthe presynofptic side, aud some sort of a lattice-like apparatus (cont sewer The word just now r) on the postsynaptic side, eytondini from the dense postsynoptic membrane. What this synopse does is to provide the means of mitral activitinipty unducu-y granule danlitic depol., which we are almost compelled to assume from the field cousiterotions. The res of the story still requires the slow, fizzhog response of granule dendrites which will he presumed to exert an inhibitory fec upon The mitral cells, mia wide lota inhibitory sense. This mi hotution could conceivably be by means of very special synopses, but it could perhaps more sonly he by means of ordinary intitiltong synopses, with sustained effect due to fizzly character of granule cell response. The collateral frow mitrals to gramile cell bodies would hove to be intirtitory. This is the some idea that Gordon of A hod earlier hue we dod, not hone the fact of such synopses hentoy been observed.

Hael MMOO:C somas) tarelMu)

$3 / 16 / 65 \quad 3 / 17 / 65$
Sippet afternoon with K. Frank, Phil Nelson, Bob-Burke, and Ted Evans (fam Berrnizham) regardim Tom Sunith's conclusions of arguments, as now incorporated in a monkocrint. Abs discussed some of Bob Bush's observations of epos p and ipep shops of interactions. Question to consoler is which computations that of could perform would be the most useful in checks] ont the vasions questions that bother them.
K. Frank especially concerned about question that he \& \& \& Phil o Tom discussed numerous times. How detectable at the soma is a dendritic conductance change which genorstas a siguificons epsp. Is it possitle to generate a sig. epsp at soma o still have the conductance change measurement he close to noise? K though ny case of chopping off dendrites at different lengths mugs he B.k., bit even then, A Amok A hod to treat the conductance change as corest i, not kief. This would only set an upper limit, his can do for dofferew frequencies. Computationally, A con hove ε be brief his cancer to apply step than to apply A.C. - bin coned even ty that too.
Computation phase sensitive detection T.G.Smitu T J.S. Bryan
(1) Offer reading Tom's phase methods (for 100 cps), decode if it would he frimfful to set up compratation for peinpothenal E worth applied + a -curses step at soma.
(2) Consider extension to A.C.

Note, woth regard to suigle himpstom, we hove the rroblem that epsp peald noh-linearity lies between (4) linearity of inicial slope
(2) non-liveanty of st.st.

Zut, soon Δt, this con he mode quontitestine for the sungle limp.

$$
\begin{aligned}
& \text { Ratio }=\frac{v(\Delta t)-v(0)}{\Delta t v_{0}} \\
& =\frac{\left(v_{s}-v_{0}\right)\left(1-e^{-\mu \Delta t}\right)}{\Delta t i_{0}} \text { ande eq(12)of Ojai } \quad \text { gives } v_{s}-v_{0 s}=\frac{\tau v_{0}}{\mu \tau} \\
& =\frac{1-e^{-(1+\varepsilon+\gamma) \Delta T}}{(1+\varepsilon+j) \Delta T} \\
& \text { A1 }(1+\varepsilon+y) \Delta T=x \\
& \text { Men, Ratio }=\frac{1-e^{-x}}{x}=\frac{1-1+x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\cdots \cdot}{x} \\
& =1-\frac{x}{2!}+\frac{x^{2}}{3!}-\frac{x^{3}}{4!}+\text { eto which is useful }
\end{aligned}
$$

The mitoresting panst is theo $4, \sqrt{0}, \beta$ ata all wadn ont. But, Stown
$3 / 17 / 65$
(3) Re Bobburhe's interaction, would lithe more drametic theoretical demonstrations of occlusone of non-occlunvre types of interaction. epsp bow 3 to 4 mV apièce Try to gel some limear to within 190 others losung as minh es 15%
Ceso, with sersitiivity to timing.
is. (A sinultaneons epsps (as seen)
(B) shifted in both directions

Note: The more peripharal one shoued be made strouger to match hetter.

I moy he able to haighten some effect by uniog lozger \mathcal{E} is suigle comprostments.

Cousoder $\varepsilon=4$ in AAt 2 Sor $\quad \varepsilon=5$ $\begin{array}{ll}\text { andperluep } \varepsilon=9 & \varepsilon=10 \\ 16 & \varepsilon=20\end{array}$
Aso, consoder of ton trios E
At the other ytreme, ure small Eover layge area
eppatiof
chargsig v in neghbonir cpts. Won't wash out this way. Misut take up
65.101

piriscands to be replaced for other E locations.
Suspect that Cp. 2 will hove wrong time spacciog, because it dues not have the wayime fine value oriznially intended.

Datapoits here are $50+50+6+6+26+26+6+8=112+66=178$ \therefore coned increase the Fur (25.) to (42.) if needed.
$3 / 12 / 65$
65.100 series

Thinhor of setting up New Equiv. Cyl EPSP Series. Old 730.900 series used $\Delta t=1 \quad \lambda_{i j}=1.25$

$$
\lambda_{o i}=.05 \text { etc. }
$$

But now use $A \bar{T}=.05$

$$
\lambda_{0 i}=1 \quad \lambda_{i j}=25 \text {. }
$$

Clos let Cf. 12 be \sum source and set $=1.0$
11 be Source \& so $=-0.1$
let ordinate scale he from -0.1 to +0.35
Don't bother with dependence relations, except possotly for $\lambda_{i j}$ b but plan to he explicit obi och perturbation. The initial values of all 7 shall he ser vales.
Also, to set up sinusoidal mimi problem
Moves hesponited ont that

$$
\text { If } \begin{aligned}
\lambda_{22,21} & =+\alpha \\
\lambda_{21,22} & =-\alpha \\
\lambda_{0,21} & =-\alpha \\
\lambda_{0,22} & =+\alpha
\end{aligned}
$$

diff. equ has suinsoidal
sole
root is $\pm i \alpha$

$$
\text { ie. get } \alpha=2 \pi f
$$

$$
\text { i/ } f=1000 \text { ps, } \alpha=600 \text { ontinseco }
$$

$$
(600)\left(4 \times 10^{-3}\right) \approx 2.4
$$

$$
\text { Let I.C. be in } 21
$$

del (22)feed (1) ie. hove $\lambda_{0,22}=\alpha-\lambda_{1,22}$
65.101
$\varepsilon=5 \mathrm{~min}(2)$ gave peak of 0.26 in (2) $\quad\left\{\begin{array}{l}\text { in } T=0.25\end{array}\right.$ aud ped of 0.23 in (1)
$\varepsilon=10 \mathrm{~m}$ (4) gave peak of $0.365 \mathrm{~min} \quad$ (4) $T=0.25$
The tapes were node much too small. Qetrally, these amplitudes are better regarded as anmmettions beccrise for 50 mV resting pot: these conerp to 10 to 12 miveps p
Company with p.90, note that in (2) $(1+\varepsilon+g) \Delta T=(6)(.25)=1.5$
\therefore Ratio mediated for isolated pooch would be $\frac{1-e^{-1.5}}{1.5}=\frac{1-.223}{1.5}$

$$
\approx \frac{0.777}{1.5} \simeq 0.516
$$

Wheres a orally $\frac{.26}{5(.11)}=\frac{.26}{.55}=0.47$
The agreement here suggests that the Nijeffect is small, presumably because it effects both in Fícialslope and frivol value ni a smirlas wy, as does ψ for isolated patch. This is another example of going faster Toward a lower stist. value.
Now-loik of (4) where hove $(11)(.25)=2.75 \quad$ Ratio $\frac{1-e^{-2.75}}{2.75}=\frac{1-.067}{2.75}$

$$
=\frac{.936}{2.75}=0.34
$$

whereas actually pomconpurter results $\frac{.365}{5(.2)}=0.365$ which is also very close.

3/18/65
With regard to effect of peripheral E upon soma impelance measurements, note that A con avoid The epsp itself by simply not comecting to source cit. ie. leave $\lambda_{i, 12}$ zero \& $\lambda_{0,12}$ zero and change orly $\lambda_{0, i}$, thin lestingonly the conductance change wither complication by ibifage, then dou't ned to weboth t and -
is- for applied current step and persons

Difference wold provide a
with epos al va proem, miguel spelt
If the shift is small, then
the charge in epsp would be
small. Then adding should gone twice the epsp Subtraction should give twice that for zerosimace
1 shires and hove two representorves.
$3 / 19 / 65$
13 compastinent $1-12$ plus where is source for coun. Cunnat.
Dotacords Hb-l to reremm with \# 20 renamed \# 13
step $\left\{\begin{array}{c}1 . \\ 1, \\ 200,\end{array}\right.$
cortinue $\begin{aligned} & 126 . \\ & 1 . \\ & 200 .\end{aligned}$

	.9
.1	
10	1

9	40
1.	14.

suntan 126 .

$$
10
$$

Gpore 200.
continue 126 .
1.

$$
1.3
$$

200.

adfinitial coulituon ì $(20)^{13}$, also Nentore ot $2 m i t T l_{1}$ aede $\lambda_{1,20}=1$. and $\lambda_{10}, 20=-1$. To origuandst

$$
\text { T.C. }\left[\begin{array}{cccc}
26 & & & 10 \\
0 & 6 & 21 . & 11 \\
26 & & & 11 \\
0 & 6 & 1 . & 12 \\
26 & 6 & 21 . & 12 \\
0 & 6 & 13 \\
26 & & 13 \\
0 & 6 & 10 & 14 \\
26 & & & 14
\end{array}\right.
$$

3/18/65
Puzzle - missing the output listing of 6551-6560 (2/25/65) which was set upon poge 64 and chearedover on p.69 Fortunately, can manage withant it because of $3 / 2 / 65$ sum which 1 do house (this was loft on my desk \rightarrow) Whereas other one was probably left on top of stock in The bookcase. Did someone borrow it?
$3 / 19 / 65$
Set up 65.102 offal loobroy over 65.101 got (seepp92904)
stat (satin) (1)
$\begin{array}{rllll}\text { Dearie to repent for } \varepsilon & =20 \mathrm{im}(6) \quad 0.544 \quad .160 \quad \text { T., } 5 \\ \varepsilon & =40 \mathrm{mi}(8) \quad 0.75 \quad 0.143 \text { T..75 }\end{array}$
Use Kappa $=0.4$
Reduce the decoy dato points to 20 in the perturbed comperstmentos din cease to 49 in pit. 1

Modeduplisate decks to facilitate setting up 65.201 for current step applied to soma.
Forfurstest, picombuctonce charge in 6 ? $\frac{\ln \text { with equititriom potential eprel to resting. }}{65.102}$.

Perturbed Compartment

Note that Phil Bol told me their resting potentials areasiand 50 mV . thpontan to know if this cow vale is due to dentintic ε bockroound, or mild somatic nijury, If mild somatic ming, need to old this to I. C. fie e. like a steady state unto cathodal current o
$3 / 22 / 65$
15.202 Resubmit 65.201 with cst \# 20 renamed \#13

3/23/65 Resuhnat with rescaling and call for extra time on card 3.
Put in 65.103 like 65.103 with Evolves halved.
65.104 litre $65.101 \quad 11 " u 1$

Then one can conclude something bant the amount of non-lin for simultaneous summations at common locations.

Also, can compere $\varepsilon=20$ in (8) for $5 \Delta T$
65.105 and with $\varepsilon=100 \mathrm{in}$ (8) offer ore ΔT and worth $\varepsilon=20$ in (8) for one ΔT
Hostoreown rational with Some ane aids.

This permits continent between $\left\{\begin{array}{l}\text { highly focused summation } \\ \text { more dispersed smination }\end{array}\right.$
De. $\varepsilon=20$ for $5 \Delta T$ represents 5 of $\varepsilon=20$ for ore ΔT, in sequence shear $\varepsilon=100$ for one ΔT " " " " $"$ ", smiultanerne
tuteresting to compare peaks,
Wort mitbeshing to see if $\varepsilon=100$ for one ΔT con appreciably steen rate of ruse al opt. (1).
see over page 105
3/22/65 - Phonedtorn Reese aton writing up granule-nitial story as a short note. He seamed interested, hit wanted to talk with Bngntuman. He will witt gordon aten his visit to Retina Foundation of A will wite to Gordon ohoul this prowole note to Sueñce. Waghe pair of notes, one from met Gordon one from Reese x Bughtman.

3/23/65
(1) Tom Rease called hock \& expressed siterest in jount paper.
(2) Dan Polhin, woskurg with Dieter Lux, celled to ask obout analysis of soma-dendritic Tousients. They havelean secordno IRSP, cursen steps of condrictonce changeo in Be藋 celld. Their IPSP are as largeas $8 t_{0} 10 \mathrm{mV}$ They clani 40 to 60% conluatonce chonge Their "time constant' do not toke dendrites into accont. They get about 10 meg RN. \mathcal{R} sent then ny Ep. Nensof sopsints and The poje on Sholl from NMRI repart. Thy may coll me back.

We thuiks their IPSP data ishest t most suited to quontitatrae anolysis. Homeves, he does not yet seem to have a clear model. It sail that if they are propond to specify detaits for a model, we nuzhet be oble to do some calcs. tu proticulor, whather Thair proborget G_{j} is sufficiont to accont for Their I.PSP.

3/24/65 Setup 65,106

$$
.107
$$

$$
\begin{aligned}
& \varepsilon=2 . \mathrm{mi}(2), \\
& \varepsilon=4, \mathrm{mi}(2), \\
& \varepsilon=9.5 \mathrm{~m}(4) \\
& \varepsilon=9)
\end{aligned}
$$

\square

Juhtuan ash

 coak sul acomanath $y+e_{3} d 8.80$ mown suats es a.
$3 / 24 / 65$
65.202 worked

Ten Compartments with $\mu_{i j^{\prime}}=\lambda_{i j^{\prime}}=25 . \quad \lambda_{0 j}=1.0$ Steady stolevolues for an influy of 1.0 per है into (1) aredofollows 10.18855
$2 \quad 0.15609$
30.12988
$4 \quad 0.10886$
50.09219
$6 \quad 0.07921$
70,069405
$8 \quad 0.062372$
$9 \quad 0.057835$
100.055610
for stop on, valuien reaches 0.1836 by $T=3.0$
This is $\frac{.005}{188}$ or approy $(2.5 \%$) pomst.st in (1)
probobly fasthe fromist.st. in (10)
Now test $\varepsilon=20$ with $F_{G}=A_{2}$, wiother wordes $\lambda_{0,6}=21$. Such an ε witu $E_{C}-F_{2}=1$ fores $\angle T=0.25$, mi(b), goresomessppeak of 0.16 in (1) Howver, contuntance MlCharye a lone, applif at $T=1.0$ opter onset of current step 'ie whon arphitudein(1) in up to 0.15), depresses This hovisint anly by obout 3% et $T=1.36$ ie. $\frac{.16066 .1555}{11606} \approx \frac{.005}{161}$
Mantanied conbuctance charge in (6) beds tostst, effect \& 18%

Note for suige $\varepsilon=20$ min (8) for $\Delta T=.05, \quad \frac{\text { peak in (1) }}{\text { peek mi(8) }} \cong \frac{.029}{.345}=.084$ ratio

$$
\begin{array}{ll}
\text { Por 5of there simultaneor }(\varepsilon=100) & \frac{.070}{.769}=.091 \text { ratio } \\
\text { for } 5 \text { nijsqume }(\Delta T=.25) & \frac{.1045}{.575}=.182 \text { ratio }
\end{array}
$$

i.o. 5 munielteneons sinceases peok in (1) F(8) Luy opproy some foctor (2.3)

195 in requence does less will for peoh in (8)
bu, of ti doeo letter forpeck in (1)
Now look ot slope at holf mox in (I)

$$
\begin{aligned}
& \begin{array}{l}
\varepsilon=20 \text { in }(8) \text { for } \Delta T=.05 \\
\varepsilon=100 \text { in }(8) \text { for } \Delta T=.05
\end{array} \\
& \begin{array}{l}
\text { peak at } T=0.65 \quad \frac{.0171-.0128}{.3-.25}=\frac{.0043}{.05}=.083 \\
\text { hoef don \& } T=1.7
\end{array} \\
& \text { hoe dom, } T=1.7 \\
& \frac{.0171-.0128}{.3-.25}=\frac{.0043}{.05}=.083 \\
& \rightarrow \text { halmp }+0.27 \quad \frac{.0426-.0322}{.3-.25}=\frac{.0104}{.05}=.208 \\
& \text { Jucho } 0.65 \\
& \text { hot dound } 1.65 \text { t } \\
& \text { rotio } \frac{208}{83}=2.5 \\
& \text { apmon suraco mistitude } \\
& \varepsilon=20 \text { mi }(8) \text { fr } \Delta T=025 \\
& \text { heyouryp. } 35 \\
& \text { peakat. } 75 \quad \text { slope }=0.29 \\
& \text { holdon } 1.8 \\
& \text { ratio }=\frac{289}{83}=3.48
\end{aligned}
$$

3/25/65

$$
65.105 \text { tested } \varepsilon=20 \mathrm{mi}(8 \text { for } \Delta T=.05
$$

$$
\varepsilon=100 \mathrm{mi}(8) \text { for } \Delta T=.05
$$

to be compert with previons $\varepsilon=20$ wi(8) for $\Delta T=.25$
$\varepsilon=20 \mathrm{~m}(8)$ for $\Delta T=0.05$
pathen'(8)
.34518
0.02869
$\varepsilon=100 \mathrm{~min}(8) \mathrm{p} \quad \Delta T=0.05$
(5) Ratio lenceter
foom $\varepsilon=20 \mathrm{~min}(\theta$ for $\Delta T=0.25$
(5ppulet) Ratio
.7690 ㅇ.07017

$$
(2.23)^{\text {thathen }} \quad(2.44)
$$

$$
\begin{aligned}
& \text { (pratumedy erea } \\
& \text { rute is } 22.44
\end{aligned}
$$

.575
0.1045
65.106 \& 107 affel to poge 98 in green. provide good wat ch for sualler of eoch pair
65.203 uses shmi $=40+1$ ni (8)
seep, 110
mote that in (1) $\varepsilon=20 \mathrm{mi} 8$ for $5 \Delta t$ groe mort
bin mi (8) $\varepsilon=100 \mathrm{mi} 8$ for $10 t$ gam most

Actually, They min now remitapret their results. Why they hove shown is that mary of the epsp are generate in the dendrites now tho they know ny results. My result show That twin to peak con he oftairied even from dendritic synapses. Thai time to peak is from 0.4 to 1.5 insec, average about 1.1
But all o/ there asp, compital for ε ni (2), (4), (B), (4) will fit this range. Ah the case of $E \mathrm{~min}^{-}$(6)

Mir was the most telling point to Phil Nelson. Tom hal hoped to ruble out to peripheral locations on this basis.
$0.11 .1 .4,45$
Furthermore, Tom and f figured on that several additional observations would fit the hypothesis that many epsif are confound, with the earliest par dIne to peripheral E and the later par due to central E. This seed

* to fit the peculiar turn one during sustained aptiedesolarization which could reverse drimerpot at soma, while not in periphery.
 Could try to simulate both of these.
* The other obserortion is the fort the when he does get a detectorle conductance change, it occurs of ten other peak of sst, which could he explained if early pratt due to
$3 / 25 / 65$
K. French, TounSuith, PhilNelsor \& RoyWverker come over thismoung. Byres of 65.202, conomiced Therm that they could not detect such conductance changes. Tom thought he had proved epsp we se not generated ln conductance changes, required cussont injection. He Thought that anebetric synapse would inject current without cannon a recadurable conductance change. I turk A convinced them that this was not sop t argued that this is also formally. a conductance change, vie. That synaptic plaque low conductance would he opened to extracellular pot. In The knob stem coubrictonce change. They seemed to think wore of the presguaptic spike voltage. forcing current through a sizable synaptic resistance, and Tour hal conumicet hniself that there would be no measurable conductance change nabelved with such current injection, even at the soma. Some of the flaws of his argment probably comet from wingsteady state considerations.
* Forgot to ask them the amplitude of their sinusoidal testing voltage, this coned make a little difference, len probobly not rude

Since histology has sown mo difference, so for, for Eon synapses, coned suggest that ebetrie hypoth would work for both.

Withregund to their phose sensitive detection, They do not feel confident of de testing a conductance change of less then 10\%
$G / G=4 \mathrm{in}(2)$ ained at $\varepsilon=3 \mathrm{~min}(2)$ yovis is gupentod to gove perte ≈ 0.14 seep. 98
obro $G / G=7.5 \mathrm{~m}(4)$ avice ot $\varepsilon=6.5 \mathrm{~min}$ (4) which is quessed to gimeperk apsp 20.14

| Could also redo series for $\varepsilon=20 \mathrm{mi}(8)$ | G / G | | |
| :--- | :--- | :--- | :--- | :--- |
| | $10 \mathrm{~min}(6)$ | 11 | 65.206 |
| There are ained at | $4.5 \mathrm{~m}(4)$ | 5.5 | 65.207 |
| epsppeak ≈ 0.102 | $2.0 \mathrm{~min}(2)$ | 3.0 | 65.209 | seep. 98

$3 / 29 / 65$ sef uptommutor peitumud yptan
65.206 prusposely avade bour $\lambda_{08}=21$. so that can get stist. form opt. size. This required espliut zero T.C?
du065,207

$$
\lambda_{06}=11 .
$$

$.208 \quad \lambda_{04}=5.5$
$.209 \quad \lambda_{02}=3.0$

3/25/65
Setup 65.204 with $G / \mathrm{Fr}_{2}=7.5$ in (4)

$$
65.205 \quad G / G r=4 \operatorname{in}(2)
$$

Consiter setting up 65,301 with sinusoid poolned loy $13 \not 14$ \therefore vircerese opt mumber to 14
Then, lookng at p.93, set Jok $51 .+6$ o
Also, must place zero in mid poper, i.e. set $10-11,25$
abadyhoue $\lambda_{1,13}=1$. as in 65.200 saries
Se $\begin{aligned} & \lambda_{13}, \lambda_{14}=+2.5 \\ & \lambda_{13}=-2.5\end{aligned}$
$\lambda_{14}, \lambda_{13}=-2.5$
$\lambda_{0,13}=+2.5$
$\begin{aligned} \lambda_{0,13} & =+2.5-1 \quad \text { so that } \lambda_{13,18}=1 .=2.5+1.5 \\ & =+1.5\end{aligned}$

$$
\lambda_{0,14}=-2.5
$$

Let I, C. in 13 be I. as in 65.200 sesies.

If suinsoidal wooks thy two chonss of 5 with $\mu_{i \prime}=6.25$ and run 180° on of phase ant use sundmes. Use pres abteitiol

epeppeak
fromp. 98
$3 / 26 / 65$ ~ $3 / 29165$
Reforbodito p. 814 eorlier. Tine to soturn to bineta model windup. Quention of fizo. lhe thore shatcst on pp 66 and 73 .
See exp.p. 71
Nar Ty Do follown
Baodupon $6556 \$ 6566$

Setup 65.208 woth $\lambda_{04}=5.5$
65.209 wit $\lambda_{02}=3$.

$3 / 30 / 65$
WXR 752C-6581-6587
also 65.206 \& 65.207 ran Snccessfully
ant 65.301 sinusoidal worked up to time cliange.
\therefore Quite a lot to digest, before setting up nextrims.
65.301 - Sminsoidal period come oni 2.5ε as intaded. Howerer, starking gp. 13 with I. C. $^{\prime}=1$. may not be quichert woy to steody state suinsondal. Whght he better to slort with 13 at zero and 14 at - 1 .
Abs, moy wosh to monitor congor finew 13 , although not'really necessary. would need $K_{\text {appa } 13}=0.1$
This test shous that gpt. 6 folloms pretty well, even oftes ovecycle. At lags approf ly $0.4 \approx$

\[

\]

65.302 ontput to compere with 65.301

Problem with Scalnig and Koppas
Did succeed in shifting phose, boi not pwote as, vted ? 180 anoy
Did stsist seem to arrowe sooner in (1)?

4/2/65 wow 21/2 dop on sick bave Receined aimmil Special from Sordon Shepherd,
elephone coll from Tom Reese regading the
prosed joint poper. - see p. 86 at telephone call from Tom Reese regading the
proposed joint poper. - seep. 86 seply to
letter opluasdiz3
$4 / 5 / 4 / 6 / 65$ roughed memo
to Qaodopi Shopherl, Tom Reose \& Anigatimen
Complet table on p. 112 based on onjunt receind $3 / 31 / 65$ $65.208865,209$
looh at 65.302 , oppoite page
There was a goof on the amplitude scaling.
Howeves, dodget perfect smusoidal in (13)
whoch drives (1)

$$
\text { A canget phase } \log \left(\begin{array}{ll}
(13) \\
(13)
\end{array}(6) \rightarrow 6\right.
$$

2nd pospeok in (13) was at $T=4.40$
$\begin{array}{ll}\text { (1) } & 4.65 \\ \text { (6) } & 5.05\end{array}$
$\frac{\pi}{5}:$ (1) lags (13) by $0.25 \tau \quad \theta=\left(\frac{25}{250}\right)(360)=36^{\circ}$
ज $\frac{\pi}{3}$ (6) $\log s$ (1) $\operatorname{ly} 0.4$ r $\quad \theta=\left(\frac{40}{250}\right)(360)=57.8^{\circ}$
$\sim \frac{\pi}{2}$ (6) $\log _{2}(13) \operatorname{lrg} 0.65 \tau \quad \theta=\left(\frac{65}{250}\right)(360)=93.5^{\circ}$
ZOonld get all apts by rermmos but pbothing only last hof cycle
$4 / 8 / 65$
Todpy several separate lives of Thought
convergeed upon the subject of fietd effect
(1) Bullock oblsed me about them in March with regord
to his electric fish of alvonse (2)
(2) Foy $1 O^{\prime}$ Brien pp $888-890$ in Feb 19,1965 issue of Saince
(3) Cechuer, presunobly a gradinote studew at

Cose tust. of Techu, Éshed we obout my B,V,P
cale. on p. 164 of Booplys 9 . poper.
(4) It occursed to me This mosmaniz that the foeld geveroted by the gromile cells nizht itself provide rae intitition of the mitrol cells.
Havroy boudered all this, Ahegri to thinh it all fits together. The grodien geverated by the grounte colls is in the corred direction, o abs of significont mognitude, To movide anotal stimulation of the mitral somata (the steppost gradient is in the right place). If dendrodendritic symepres should olso provide a lower resistance poth, this could, provide for unore nivosion of the anodal current, esp. If this hiapher deuditic nembrave conductance does not depolerize, the conditions would be ideal.
Because of extonded darlitic
conductance change, it would

berven more miportoul to hone way goobient at MMBL
Quation is, how minc cunsai woild flow acrons soma membrave to came hypappl. Calso, hownunte statulization povided/ opas from lyperpol.

418165
Tuthincose，BVPis extracell grodien given
extonsine dondritic of lent perhops with $E_{j}=E_{r}$
Eped would be to reduce impedonce forcurren thrucell． Could do a simulation of this problem，smidar to simulation done for Surith +7 Frank，with L / λ smaller．

one wey to think of t is to soy tho denditi f reduces A and this reduces $G_{D} \propto \lambda R_{i} \propto \sqrt{\text { Rmari }}$
it．veally depende upon st．st，Gs／GD
fecause will det hou externally opplied pot．，ideolly opplied ext．Toversuggext ito all dendrites，would dovide acrors soma mentrone，versus acrors dentritic system．If $G_{S} / G_{D} \equiv 1 / 5$ to $1 / 10$ get avodal hypapol acron soma menhane to be $5 / 6$ or $10 / 11$ of toal opplied．－Bul this sumple opproach veglects the dist of opplied pot．alonz dendritice lergth．Forthis，mis rechide orignial BiVimethod．
seep．121．
Butnow，cousides 7ax + OB⿱㇒日⿰㇇⿰亅⿱丿丶丶rion．My explanation will fit theri data if tancossed in assumor that，their evoked pot．secondrozo are surfore versus microbetrode（or focal posidownuands）as wanld seen tobe the case from Chong＇s stolemew in Handlook Tho primiry response is susfoce po2．Af this is the cose，then F\＆O data shows that surfocit，deop－，agrees worth ewhanced firing．
$4 / 9 / 65$
Tromold folder of notes for Bioplys Sougres Celculators 7uist batch $5 / 18 / 61,6 / 5 / 61,6 / 7 / 61,7 / 7 / 61$ Itmerial celco.

Expers rel to z of equivalin cylinder.
Let $V_{e}=V_{e 0}+F(z) \quad$ where $V_{e 0}=V_{e}(0)$ Where $F(z)$ contans the resultoul applied $F(0)=0$ non-unformity. It is a forcniz function.
 and,

$$
\text { gfor pornore mankare } I_{m}=\frac{V_{i}-V_{e}-E_{r}}{R_{m}}
$$

(although, mou generally, how eq.1 of $N \cdot y$. Qcod.poper)

$$
\text { or eg(2) ImRm }=r^{\frac{\partial V}{\partial t}+k^{2}\left(V-V^{*}\right)}
$$

For stoodystote,: $\frac{d^{2} V}{d z^{2}}=k^{2}\left(V-V^{*}\right)$ see
Now, $V=V_{m}-E_{2}=V_{i}-V_{e}-E_{r}=V_{i}-\left(V_{\text {eo }}+F\right)-E_{r}$
Define $U=V_{i}-V_{e o}-E_{r}=V+F(z)$

Thus, the trids is to solve for U, with $F(Z)$ as forcary for see oner.

In pupposes op perifs soy pasticulor soler
Note, dofferatiating a convolution is a special cose of the follow y'

$$
\begin{aligned}
\text { if } \psi(z) & =\int_{g(z)}^{f(z)} \Phi(\tau, z) d \tau \\
\text { Then } \frac{d \psi}{d z} & =\Phi(f(z), z) f^{\prime}(z)-\Phi(g(z), z) g^{\prime}(z)+\int_{g(z)}^{f(z)} \frac{d \Phi}{d z} d \tau
\end{aligned}
$$

\therefore If $\quad Y=F\left(z^{*} \sinh z=\int_{0}^{z} F(\tau) \sinh (z-\tau) d \tau\right.$

$$
\begin{aligned}
\frac{d y}{d z} & =F(z) \sinh (0)+\int_{0}^{z} F(r) \cosh (z-r) d r \\
& =0+F^{*} \cosh z
\end{aligned}
$$

and $\frac{d^{2} y}{d z^{2}}=F(z) \cosh (0)+\int_{0}^{z} F(\tau) \sinh (z-\tau) d \tau$

$$
=F(Z)+F^{*} \sinh Z
$$

$$
\therefore \quad \frac{d^{2} y}{d z^{2}}-y=F(z)
$$

wherens $\left.\frac{d^{2}(-y)}{d z^{2}}\right)-(-y)=-F(z)$
$\therefore-F^{*} \sinh z$ is a paticular solution
Abone miplies that $\frac{d}{d z}\left(F^{*} \sin k z z\right)=F^{*} k \operatorname{coth} z$

$$
\text { also } \frac{d}{d z}\left(F^{*} \cos h \frac{k}{z}\right)=R F^{*} \sin z+F
$$

$4 / 9965$
for persive mendrave + sterdy state

$$
\frac{d^{2} V_{i}}{d z^{2}}=V_{i}-V_{e}-E_{r} \text { becomes } \frac{d^{2} U}{d z^{2}}=U-F(z)
$$

B.C. $\frac{d v_{i}}{d z}=0$ at $\begin{aligned} & z=0 \\ & z=z_{\text {max }}\end{aligned} \quad$ heamms $\frac{d U}{d z}=0 \quad$ at $\begin{aligned} & z=0 \\ & z=z_{\text {max }}\end{aligned}$

This depends only upon Er const, becane Veo alredy const.
My 1961 proedure was to use Joplace transfomm, hut clessical proviure should also work.'
Homezeneoss problem in $\frac{d^{2} U}{d z^{2}}-U=0$
going geveralsolution $U=c_{1} e^{-z}+c_{2} e^{+z}$

$$
\text { or } U=b_{1} \cosh z+b_{2} \sinh z
$$

Now, to get ponticular solu, $\rightarrow-F^{*}$ sinh z

* Talked with fose' \& he twints ny ongunal woy of
gething this solution is probobly simplest thest
Namely, taploce tranform o/DE goves

$$
s^{2} u-s U_{0}-\frac{d U}{\left.d\right|_{0}}-u=-f(s)
$$

Culbeconse of $\frac{d U}{d z}=0$ at $Z=0 \quad$ B.C. cansene several stepolly prething this fact nialsody
Thon

$$
\left.\begin{array}{rl}
u\left(s^{2}-1\right) & =s U_{0}-f \\
u & =\frac{s U_{0}}{s^{2}-1}-\frac{f}{s^{2}-1}
\end{array}\right\}
$$

where U_{0} must be determied to sotisfy B, C, at $Z=Z m$

419165

$$
\frac{d U}{d z}=U_{0} \sinh z-F^{*} \cosh z-0
$$

$\therefore \frac{d U}{d z}=0$ at $z=z_{m}$ gores $U_{0}=\left(\frac{1}{\sinh z_{m}}\right)\left[F^{*} \cosh z\right]_{z=z_{m}}$
$\therefore U(z)=U_{0}$ coli $z-F^{*}$ such z
with Vo defined as above.
Noteolso, $V_{0}=V_{0}$ and $V(z)=V_{0} \cosh z-F \frac{*}{\sinh } z-F$
Toobtion $F^{*} \cosh z$, note that $L\left\{F^{*} \cos l z\right\}=\frac{s f}{s^{2}-1}$
Showed $6 / 5 / 61$ as well os $5 / 18 / 61$ that

$$
\text { for } \begin{aligned}
F(z)=b z, & F^{*} \cosh z=b \cosh z-b \\
U_{0} & =k\left(\frac{\cosh z_{m}-1}{\sinh z m}\right)=b \tanh \left(\frac{z_{m}}{2}\right)
\end{aligned}
$$

also, become $F \sinh z=k \sinh z-b z$
we ge $U=k \tanh \left(\frac{z m}{x}\right) \cosh z+b z-k \sinh z$
$a b s, \begin{array}{rl}a+z=z_{m} & U-b z\end{array}=k\left(\frac{\left(\cosh z_{m}-1\right) \cos z m}{\sin z m}-\frac{\sin ^{2} z_{m}}{\sin z_{m}}\right)$ $=k\left(\frac{1-\cos z m}{\operatorname{din} Z m}\right)$ become $\cosh ^{2}-\sinh ^{2}=1$ $=-V_{0}$

Which ptoytiol, intuition demands

Consider $F=b z$ then $F^{*} \cosh k z$?

$$
\begin{array}{r}
\Leftrightarrow b \int_{0}^{z}(z-r) \cosh k r d r \\
\quad=\frac{b}{k} \int_{0}^{z}(z-r) k \cosh k r d r \\
u
\end{array}
$$

Loploce Thampom

$$
\left(\frac{k^{2}}{s^{2}}\right)\left(s^{2}-\sqrt{c^{2}}\right)
$$

$$
=\frac{b}{s\left(s^{2}-k^{2}\right)}
$$

$$
\text { t. } \int u d v=\pi v-\int v d u
$$

$$
=\frac{l-s / k^{2}}{s^{2}-k^{2}}-\frac{b / k^{2}}{s}
$$

$$
\begin{aligned}
& =\frac{l}{k}[(z-r) \sinh k \tau]_{0}^{z}-\frac{l}{k} \int_{0}^{z}(-1) \sinh k \tau d r \\
& =0+\frac{b}{k^{2}}[\cosh k \tau]_{0}^{z} \\
& =\frac{k}{k^{2}}\{\cosh k z-1\}
\end{aligned}
$$

Qero, counder F^{*} suinhz for $F=b z$

$$
\begin{aligned}
& \frac{b}{k} \int_{0}^{z}(z-r) h d \sin k r d r \\
= & \frac{d}{k}[(z-r) \cosh k r]_{0}^{z}-\frac{t}{R} \int_{0}^{z}(-1) \cosh k r d r \\
= & -\frac{b z}{k}+\frac{b}{k^{2}}[\sinh k r]_{0}^{z} \\
= & \frac{d}{R^{2}}\{\sinh k z-k z\}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{b}{s^{2}}\right)\left(\frac{k}{s^{2}-k^{2}}\right) \\
= & =\frac{b / h^{2}}{s^{2}-b^{2}}-\frac{\left(k / k^{2}\right.}{s^{2}} \\
= & \frac{b}{R^{2}}\{\sin k k z-k z\}
\end{aligned}
$$

41996
The $5(18 / 6)$ note also miclued $\frac{d V_{i}}{d z}=\gamma V_{0}=8 \mathrm{U}_{0}$ for the case of looding at sybangles, where γ would gove foadoy mpnis copusud/alijnod mipit codeletance

Bat dod not convider unvy $k^{2}\left(V-V^{*}\right)$ which would pariide way of gething effe whou there ia miform Eageomptere. Thith wouls the toedgide $W=V_{i}-V_{e 0}-V^{*}-E_{r}$

$$
\begin{aligned}
& =k^{2}\left(V_{i}-V_{e}-V_{r}-V^{*}\right) \\
& =k^{2} W-k^{2} F
\end{aligned}
$$

$\therefore D E$ lecomes $\frac{d^{2} W}{d Z^{2}}=k^{2} W-k^{2} F$
Can micopponte k^{2} in Z tigat $\frac{d^{2} W}{d(R Z)^{2}}=W-F$
Then $Z_{\text {may }} \longrightarrow k Z_{\text {may }}$
However, dessiable to keep Rexplicit, becouse $Z+F(z)$ dependo upon groonety 4 resting menbrone properties.

$$
\operatorname{See}(\beta .130+131,133
$$

$$
-1-x \mid-0) 1-i y
$$

${ }^{+}{ }^{+}+$Here hone two $(+$for row gone Θ
$3+1+2+2+2-V+1+2$
 can solve similarly.
$4 / 13 / 65$
Spent mor of doy tathing with fore chent the consequescas of symmetry in the asrangemen of contercursen capillazes. I thought first in torns of sonsces + sinshs, hiv finally ue notod that we really hone pair of somces with dist sink coused by consimption in volme.
Asoterval

© ©. (1) infinitilettre whore \oplus moano asteridand
$\theta \in \theta$ θ mens verus end.
$\oplus \quad \Theta \quad \oplus$

Sypuncty guerantaes that red limes hove zero norual grodient.

Also, beconse of distisink, will hové an equipotertial contour somewhere unside Which also has normal grodient
 Θ

This squere containg the eutire probbern
 for these two dimensias.
zero. This is the minimu value
Af use orthogetal (componid) mopppion of this, con rechuce diffusver in these two dimensians to diffusiou in one dismension, became the grodion is zers along thes equipotatial coantours.

To prone-kF* authiz is a particaler soln for W, sobst.

$$
\begin{aligned}
& y==k F^{*} \sin h k z \\
& \frac{d y}{d z}=k^{2} F^{*} \cosh k z \\
& \frac{d^{2} y}{d z^{2}}=-k^{2} F+k^{3} \cdot F^{*} \text { antitaz } \\
& \frac{d^{2} y}{d z^{2}}-k^{2} Y=-k^{2} F+k^{3} F^{*} \text { anin } k z+k^{3} F^{*} \sin h k z \\
& =k^{2} F \quad Q E D
\end{aligned}
$$

Another words $F\left(z=Z_{m}\right)-F(0)=b Z_{m}$
It $Z_{m}=0.5$, we get $\Delta F=b / 2$ applied across $1 / 2 \lambda$ y ymenter
Now, if $k^{2}=4, k=2$, we get $\Delta F=b / 2$ applied across sfletudy 1λ But the grobinit of F per effectine λ is now habed
 Hovever, this is party artefos of const gration with Z
$4 / 4165$ from $p .127$ avoid charys varible z

$$
\begin{aligned}
& \text { Thus } \frac{d W}{d z^{2}}=k^{2} W-k^{2} F \\
& \text { with } \frac{d W}{d z}=0 \text { a } z=0 \text { and } z=z_{m}
\end{aligned}
$$

Soploce tramporitoget $s^{2} w-s W_{0}-0=k^{2} w-k^{2} f$
hance $\quad w\left(s^{2}-k^{2}\right)=s W_{0}-k^{2} f$

$$
\begin{array}{r}
w=\frac{s W_{0}-k^{2} f}{s^{2}-k^{2}} \\
\therefore W(z)=W_{0} \cosh k z-k F^{*} \sinh k z
\end{array}
$$

toobtain W_{0}, dijpentiete $\frac{d W}{d z}=k W_{0} \sinh k z-k^{2} F^{*} \cosh k z$

$$
m_{n} \frac{d w}{d z}=0 \text { at } z=z_{m} \text {, get } W_{0}=\frac{k}{\sinh k z_{m}}\left[F^{*} \cosh k z\right]_{z=z_{m}}
$$

\square

Now, cousider $F=b z$, thenfrom p.126, get

$$
\begin{aligned}
W_{0} & =\left(\frac{k}{\sinh k z_{m}}\right)\left(\frac{b}{k^{2}}\right)\left(\cosh k z_{m}-1\right) \\
& =\frac{k}{k}\left(\frac{\cosh k z_{m}-1}{\sinh k z_{m}}\right)=\frac{b}{k} \tanh \left(\frac{k z_{m}}{2}\right)
\end{aligned}
$$

This con be wedes tool intuitively that argmal of tanh is multiphif by k becouse of effectively greater electrofonic le ng th lu that Wo is doudddby k, becouse $F=b Z$ per uniteffectine λ, has heen decesest, ie. $\frac{d F}{d z}=t$

$$
k z \propto \frac{x}{2 / k} \quad \ln \frac{d F}{d(k z)}=\frac{b}{k}
$$

unnz $\frac{d F}{d z}$
Note followwinf, where we counider ponsibilty that $F(0) \neq 0$
Then $F^{*} \cosh z \equiv \int_{0}^{z} F(\tau) \cosh (z-\tau) d \tau$
Eyports

$$
=-[F(r) \sinh (z-r)]_{0}^{z}+\int_{0}^{z} \frac{d F}{d r} \sinh (z-r) d r
$$

$$
=t(\sinh z) F(0)+\frac{d F}{d z^{*}} \sinh z
$$

Fout our defuinitionte $O / U+V$ requine $F(0)=0$

$$
\begin{aligned}
F^{*} \text { sinh } z & \equiv \int_{0}^{z} F(\tau) \sinh (z-\tau) d \tau \\
& =-[F(\tau) \cosh (z-r)]_{0}^{z}+\int_{0}^{z} \frac{d F}{d \tau} \cosh (z-r) d \tau \\
& =-F(z)+(\cosh z) F(0)+\frac{d F^{*}}{d z} \cosh z \\
& =\frac{d F^{*}}{d z} \cosh z-F(z) \text { evenwhen } F(0)=0
\end{aligned}
$$

Ceso $F^{*} \cosh k z=\frac{1}{k} \frac{d F}{d z} \sinh k z \quad$ for $F(0)=0$
and $F^{*} \sinh k z=\frac{k}{k}\left\{\frac{d F^{*}}{d z} \cosh k z-F(z)\right\}$
\therefore particular soln cande eyprened $-\frac{d F *}{d z} \cosh k z+F(z)$

414165
What p. 131 has revered is that $k^{2}=1+\varepsilon+g$ everywhere uniform will not make $W_{0}>V_{0}$
sutuitively,
sicrease in Uobettes achieved by
nicreasing conductance at anodal end. relates.
However, wens note, here that $W_{0}=V_{0}-V^{*}$ seep. 127 + $N . y / a c o d$

$$
\begin{aligned}
& \text { and } \begin{aligned}
V^{*} & =\frac{G_{e}\left(E_{E}-F_{2}\right)+G_{j}\left(E_{F}-r_{1}\right)}{G_{a}+G_{e}+G_{j}} \therefore V_{0}=W_{0}+V^{*} \\
& =\left(E_{e}-E_{r}\right)\left\{\frac{\varepsilon+\beta \xi}{1+\varepsilon+\gamma}\right\}
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow=\frac{E_{G}-E_{2}}{1+\varepsilon_{1}+g}
$$

To, the special case of $\varepsilon=0$ and $\beta=0$, get $V^{*}=\frac{E_{E}-E_{\Sigma}}{k^{2}}$
Tor the special case, $g=0$, $\varepsilon \neq 0$, sot $V^{*}=\left(\frac{\varepsilon}{1+\varepsilon}\right)\left(E_{t}-E_{r}\right)$

Some of the apporew parodoyes for different λ con perhaps
be most easily resolved by noting that
$\frac{d F}{d z}=\nabla F \cdot \vec{z}$ where \vec{z} is inn wetter olginger $\frac{d F}{d z}=\frac{d F}{d x} \frac{d x}{d z}$ Then $F^{*} \cosh Z_{d F *}=\lambda \frac{d F}{d x}$ pricylutinical
canberewsitten $\frac{d F^{*}}{d z} \sinh z$ because $F(0)=0$

$$
=\lambda \frac{d E^{*}}{} \frac{\sinh }{}(\lambda)
$$

$\left\{\begin{array}{c}=\lambda \frac{d x}{d x} \text { for the perticulocare where } \frac{d F}{d z}=b \text {, get } b \int_{0}^{z m} \sinh z d z=t[\cosh z]_{0}^{z m} \cdot b(\cosh z-1)\end{array}\right.$

Sunilangly $F^{*} \sinh z=\frac{d F^{*}}{d z} \cos z=\lambda \frac{d F^{*}}{d x} \cosh \left(\frac{x}{\lambda}\right)-F(z) \sec (f f$

$$
\begin{aligned}
& V=V_{0} \cosh \frac{x}{\lambda}-\lambda c \sinh \frac{x}{\lambda} \quad \text { for } \frac{d F}{d x}=c \\
& U=V+F=V_{0} \cosh \frac{x}{\lambda}-\lambda c \sinh \frac{x}{\lambda}+c x
\end{aligned}
$$

also, see f. 137 , this

$$
V=\lambda c \tanh \left(\frac{x_{m}}{2 \lambda}\right) \cosh \frac{x}{\lambda}-\lambda c \sinh \frac{x}{\lambda}
$$

These for $\lambda_{1}=1$ mem o/ p. 137

$$
\text { so } \begin{aligned}
V & =\tanh (0.5) \cosh -\sinh \frac{x}{\pi} \\
& =0.4621 \cosh x-\sinh \\
\text { for } \lambda_{2} & =0.2 \text { mn } \\
V & =0.1973 \cosh (5 x)-\sinh (5 x) \quad \mathrm{mV}
\end{aligned}
$$

4/14/65 Recopppp121-134
Particular solution for $U=V+F$ comberpeop $1-F^{*} \sinh z$

$$
\text { or } F-\frac{d F}{d z} \cosh z
$$

Which shows that pacticularseln for $V=U-F$ con berersened supply $-\frac{d F^{*}}{d z} \cosh z$
Also, the complete solution can now he exp rents

$$
\begin{aligned}
V & =V_{0} \cosh z-\frac{d F^{*}}{d z} \cosh z \\
\text { where } V_{0}=U_{0} & =\frac{1}{\sinh z_{m}}\left[F^{*} \cosh z\right]_{z=z m} \\
& =\frac{1}{\sinh z_{m}}\left[\frac{d F^{*}}{d z} \sinh z\right]_{z=z_{m}}
\end{aligned}
$$

Bio, of cause, $V_{i}=\underbrace{V_{(z)}+F(z)}_{U(z)}+\underbrace{V_{e o}+E_{r}}_{\text {constants and }}$
also, note that $\frac{d U}{d z}=U_{0} \sinh z-\frac{d F^{*}}{d z} \sinh z$
wheres $\frac{d V}{d z}=U_{0} \sin h z-\frac{d F}{d z}-\frac{d F}{d z} \sinh z$
Thus, at $z=0, \frac{d U}{d z}=0$, and $\frac{d V}{d z}=-\frac{d F}{d z}$
at $z=Z_{m}, \frac{d U}{d z}=0$, and $\frac{d V}{d z}=-\frac{d F}{d z}$
aboforp.131+132 ot $W(z)=W_{0} \cosh k z+F(z)-\frac{d F^{*}}{d z} \cosh k z$

$$
\begin{aligned}
V=W+V^{*}-F & W_{0} \cosh k z+V^{*}-\frac{d F^{*}}{d z} \cosh k z
\end{aligned}
$$

$\lambda=1 \mathrm{~mm}$

$\lambda=1$ min					
$X_{\text {unn }} \sinh \frac{x}{\lambda}$	$\cosh \frac{x}{x}$	$0.4621 \cosh \frac{x}{7}$	$V_{\text {in mv }}$	$U=V+C X$	
0	0	1.0	0.462	0.462	.462
.1	.1002	1.005	0.464	.364	.464
.2	.2013	1.020	0.471	.271	.471
.3	.3045	1.045	0.483	.178	.478
.4	.4108	1.081	0.499	.088	.488
.5	.5211	1.128	.521	0	.50
.6	.6367	1.185	.548	-.089	.511
.7	.7586	1.255	.579	-.180	.520
.8	.8881	1.337	.617	-.271	.529
.9	1.027	1.433	.662	-.365	.535
1.0	1.175	1.543	.713	-.462	.538

$X_{\text {unn }} \sinh \frac{x}{x} \cosh \frac{x}{x} \quad 0.4621 \cosh \frac{x}{x}$
for $c=1 \mathrm{mv} / \mathrm{min}$
V iimv $\quad U=V+C X$
0.462
.462
.464
.471
.478
.488
.50
.511
.520
.529
.535
.538

Use $\gamma_{m}=3$ from pp 144-145
Then $V=(0.70)(\cosh z)-\sinh z$

z	0.7 corhz	$V=0.7$ conz sinhz	$U=V+$
0	0.70	0.70	0.70
.1	0.7035	0.6033	0.7033
.2	0.714	0.5127	0.7127
.3	0.732	0.4275	0.7275
.4	0.756	0.345	0.745
.5	0.790	0.269	0.769
.6	0.830	0.293	0.793
.7	0.878	0.12	0.82
.8	0.936	0.048	0.848
.9	1.003	-.024	0.876
1.0	1.08	-.095	0.905

Nous compare two cylinders placed in the same $\frac{d F}{d x}$ of same lang th

$$
\text { bes of different } \lambda, \lambda_{1} \text { and } \lambda_{2}
$$

$$
\begin{aligned}
& \text { Let } \frac{d F}{d x}=c \text {, then } \frac{d F}{d z}=\lambda c \\
& 0 \leq x \leq x_{m} \text {, then } z_{m}=x_{m} / \lambda
\end{aligned}
$$

$$
\begin{aligned}
& \sigma 2\left[c^{*} \sin \ln \frac{x}{2}\right]_{x=x} \\
& =\left(\frac{1}{\sinh \frac{x}{x}}\right)\left(\lambda^{c}\right)\left(\cosh \frac{x}{\text { 劵 }}-1\right) \\
& (\lambda c)\left(\cosh \frac{x_{n}}{\lambda}-1\right) \\
& =\lambda c \tanh \left(\frac{x_{m}}{2 \lambda}\right)
\end{aligned}
$$

Which agrees wit th o the approach on p,131 for W of also p. 133
e.g. $X_{m=1}=1 \mathrm{~mm}, c=1 \mathrm{mv} / \mathrm{mm}$

$$
\begin{aligned}
& \lambda_{1}=\operatorname{limm}_{\lambda_{1}=1 \mathrm{mv}} \sin \boldsymbol{z} z=1 \\
& V_{0}=1 \cdot \tanh (0.5)=0.462 \mathrm{mV} \\
& \lambda_{2}=0.2_{\lambda_{2} c=0.2 \mathrm{mv}} \text { grins } z_{m}=5 \\
& V_{0}=(0.2) \tanh (2.5)=\frac{.9866}{5} \\
& =.1973 \mathrm{mV}
\end{aligned}
$$

Tor low ayous parallel to applied field of mifnite length, we have that $\tanh \left(\frac{x r}{2 \lambda}\right)=1$ for all and hence, $V_{0}=\lambda C$ and hence that offectivenes of stimulus $\propto \lambda \propto \sqrt{d}$ forsomematrials Hover, for neurons of friite extent, the tanh tern comes in too

$$
\begin{aligned}
& (x+208+8 \\
& \partial R=7 x+0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sa Nant OR } \\
& \text { W TTM } \\
& \text { min. ynit } 2 \text { - aunt wa }
\end{aligned}
$$

414165
The instrpretation here is that for some lengths of same $\frac{d}{d x}$, the shorter $\lambda\left\{\begin{array}{l}\text { at her smaller } R_{m} / R_{i} \\ \text { or sualler diameter }\end{array}\right.$
gets a larger penetration of current into core in the sense that the current derinty in the core of hence the IRdrop in the core is increased to become closer to the applied gradient.
The result is that the depol thypupol of the ends is reduced. Beer in mind that this is the steady state, we have not said how long this tokes. Presumably, with the smaller i if Notice that euriost pul of tromient gets turn Cm \& net up full apples gradin inside, very hotly, his then one con lien the deport hmperpol as the developing of forking potentials.

Quector, how to get the moot from a given $\frac{d F}{d x}=C$
answer must be for $\tanh \left(\frac{z_{m}}{2}\right) \simeq 1$ and λ maximized
trotorwords, cylinder of mifnicte length with larges possible A
Then $V(-\infty) \rightarrow \lambda C$, in otherwode, the bizgeitheletter
servals p. 138 of Book 9 for finite length, true, the longer Di the and if hofflength, h, is $<\frac{\lambda}{4}$
get depol $=$ he

415165 Now wish to examie effects off γ_{0} and γ_{m} foctors governiog nonzeso slopes at $Z=0$ \& $Z \mathrm{~m}$ Yo abrody tre ated in old votes $5 / 18 / 61$

Xo woued rofer to basoldenbrites 1 to ∇V_{e} Ym woued repes to opical tupts that hi \perp to ∇V_{e}

Here we have

$$
\frac{d U}{d z}=\gamma_{0} U_{0}=\gamma V_{0} \quad \text { at } z=0
$$

$$
\frac{d U}{d z}=\gamma_{m}\left(-V_{m}\right)=\gamma_{m}\left(U_{m}-F_{m}\right)
$$

at $z=Z_{m}$
Asbeore $D E$ is $\frac{d z U}{d z^{2}}-U=-F(z)$
Soploce tramporm toget $s^{2} u-s U_{0}-\gamma_{0} U_{0}-u=-f$
$\uparrow_{B C, O}, z=0$
Thesfore

$$
u=U_{0}\left(\frac{s+\gamma_{0}}{s^{2}-1}\right)-\frac{f}{s^{2}-1}
$$

gionigg $U(z)=U_{0}\left\{\cosh z+\gamma_{0} \sinh z\right\}-F^{*} \sinh z$

$$
\frac{d U}{d z}=U_{0}\left\{\sinh z+\gamma_{0} \cosh z\right\}-F^{*} \cosh z
$$

whichalvody satisfies B, C, at $z=0$, Nowfor $z=z m$

$$
\begin{aligned}
&-\gamma_{m}\left(U_{m}-F_{m}\right)= U_{0}\left\{\sinh z_{m}+\gamma_{0} \cosh z_{m}\right\}- \\
& N_{\text {our }} U_{m}= {\left[F^{*} \cosh z\right]_{z=z_{m}} } \\
&-\left[\frac{d F^{*}}{d z} \cosh z-F z_{m}+\gamma_{0} \sinh z_{m}\right\}-\left[F^{*} \sinh z\right]_{z=z_{m}} \\
& \operatorname{Qop}_{0} \cdot \gamma_{m}\left(U_{m}-F_{m}\right)=\gamma_{m} U_{0}\left\{\cosh z_{m}+\gamma_{0} \sinh z_{m}\right\}-\gamma\left[\frac{d F^{*}}{d z} \cosh z\right]_{z=z_{m}}
\end{aligned}
$$

Thus, we eliminate U_{m} ar (Fm) go to mext pore

The complet selution for all thase U_{0} con be eypresed

$$
U(z)=U_{0}\left\{\cosh z+\gamma_{0} \sinh z\right\}-F^{*} \sinh z
$$

Obo, uswig that $-F$ 畨inh $z=-\frac{d F}{d z}$ cellat $z+F(z)$ p. 132 vecoulwite that $\quad\left(V_{0}=v_{0}\right)$

$$
V(z)=U-F=V_{0}\left\{\cosh z+\gamma_{0} \sinh z\right\}-\frac{d F *}{d z} \cosh z
$$

Now, for $F=b z$ got $F^{*} \sin z=b \sinh z-b z$

$$
\begin{aligned}
& \text { gring } \\
& V(z)=U-F=V_{0}\left\{\cosh z+\gamma_{0} \sinh z\right\}-b \sinh z \\
& =V_{0} \cosh z+\left(\gamma_{0} V_{0}-b\right) \sinh z \\
& \text { Clso } \frac{d \Gamma}{d z}=b \\
& \text { Hence }\left(F+\gamma_{m} \frac{d r}{d z}\right)^{*} \cosh z=\left(b z+\gamma_{m} b\right)^{*} \cosh z \\
& =b \int_{0}^{z}\left(\tau+\gamma_{m}\right) \cosh (z-\tau) d \tau \\
& =b \int_{0}^{z}\left(z-\tau+x_{m}\right) \cosh (\tau) d \tau \\
& =b\left[\left(z-r+s_{m}\right) \sin h \tau\right]_{0}^{z}-b \int_{0}^{z}(-1) \sin i r d r \\
& =b\left\{+x_{m \text { sinit }} z+\cosh z-1\right\}
\end{aligned}
$$

Trom phevions poge, elimination of Umand Frm leads to the coudition

$$
\begin{aligned}
& -\gamma_{m} U_{0}\left\{\cosh z_{m}+\gamma_{0} \sinh z_{m}\right\}+\gamma\left[\frac{d F}{d z} \cosh z\right]_{z=z_{m}}= \\
& \text { dE* } \operatorname{run}^{\text {uht }}>\operatorname{Ul}_{0}\left\{\operatorname{simh} Z_{m}+\gamma_{0} \cosh z_{m}\right\}-\left[F^{*} \cosh z\right]_{z=z_{m}} \\
& \therefore U_{0}=\frac{\left[F^{*} \cosh z\right]_{z=z_{m}}+\gamma_{m}\left[\frac{d F}{d z} \cosh z\right]_{z=z m}}{\text { sindlu} z_{m}+\gamma_{0} \cosh z_{m}+\gamma_{m}\left\{\cosh z_{m}+\gamma_{0} \sinh z_{m}\right\}}
\end{aligned}
$$

For the cose, $\gamma_{m}=0$, this reduces smiply to

$$
U_{0}=\frac{\left[F^{*} \cosh z\right]_{z} z=z_{m}}{\operatorname{sinth} z_{m}+\gamma_{0} \cosh z_{m}} \quad \text { in egremens with pose } 2
$$

For the cose, $\gamma_{0}=0=8 \mathrm{~m}$, this veduces to carliest cose

$$
U_{0}=\frac{\left[F^{*} \cosh z\right]_{z=z m}}{\sinh z_{m}}
$$

Tor the cose, $\gamma_{0}=0$ lim $\gamma_{m}>0$, we oftain

$$
U_{0}=\frac{\left[\cosh z^{*}\left(F+\gamma_{m} \frac{d F}{d z}\right)\right] z=z_{m}}{\sinh z_{m}+\gamma_{m} \cosh z_{m}}
$$

Clternatim minerator is $\left.\frac{d F}{d z} *\left(\sinh z+\gamma_{m} \cosh z\right)\right]_{z=z m}$ The geveral remelt con he most compactly expressed as

$$
U_{0}=\frac{\left[\cosh z^{*}\left(F+\gamma_{m} \frac{d F}{d z}\right)\right]_{z=z_{m}}^{\left(1+\gamma_{0} \gamma_{m}\right) \sinh z_{m}+\left(\gamma_{0}+\gamma_{m}\right) \cosh z_{m}}}{(F)}
$$

Fon cese (1) ofp 137

$$
\begin{aligned}
& b=1 \text { mav man }, z_{m}=1 \\
& \tanh \left(\frac{25}{2}\right)=0.462 \\
& \operatorname{coth}\left(z_{m}\right)=\frac{1}{.76^{2}}=1.313 \\
& \therefore U_{0}=V_{0}=\frac{0.462+\gamma_{\mathrm{m}}}{1+1.31 \mathrm{Bm}} \\
& \text { i } / \gamma_{m}=1 \text {, get } \frac{0.462+1.0}{1+1.31}=40.058
\end{aligned}
$$

For cone (2) opp. 137 get $(0.2)\left(\frac{.9566+\gamma_{m}}{1+0.0)_{m m}}\right)$

$$
\text { anfor } \gamma_{m=1}=1 \text {, get } \frac{1.9866}{10}=0.19866
$$

whisch is alnart inderangal

Guerd ayperston for $U_{0} \not V_{0}$ con he remanangel toreod

$$
U_{0}=V_{0}=b \tanh \left(\frac{z_{m}}{2}\right)\left\{\frac{1+\gamma_{m} \operatorname{coth}\left(\frac{z_{m}}{2}\right)}{1+\gamma_{0} \gamma_{m}+\left(\gamma_{0}+\gamma_{m}\right) \operatorname{coth}\left(z_{m}\right)}\right\}
$$

$4 / 15 / 65$
Thus prom pp 141-143 we get for $F=b z$
That $U_{0}=V_{0}=\frac{b\left\{\cosh z_{m}-1+\gamma_{m} \sinh z_{m}\right\}}{\left(1+\gamma_{0} \gamma_{m}\right) \sinh z_{m}+\left(\gamma_{0}+\gamma_{m}\right) \cosh z_{m}}$
sell laver
lop p. 144
and that $V(z)=V_{0}\left\{\cosh z+\gamma_{0} \operatorname{sith} z\right\}-b \sin h z$

Torspecial case of $\gamma_{0}=0$, this reduces to

$$
U_{0}=V_{0}=\frac{b\left\{\cosh z_{m}-1+\gamma_{m} \sin y_{h} z_{m}\right\}}{\sinh z_{m}+\gamma_{m} \cosh z_{m}}
$$

$$
\begin{equation*}
U_{0}=V_{0}=b\left\{\frac{\tanh \left(\frac{z_{m}}{2}\right)+\gamma_{m}}{1+\gamma_{m} \operatorname{coth}\left(z_{m}\right)}\right\} \tag{ft}
\end{equation*}
$$

which reveals most clearly, the effect of γ_{m}
To ague with page 137, this con also be written

$$
U_{0}=V_{0}=\lambda c\left\{\frac{\tanh \left(\frac{x_{m}}{2 \lambda}\right)+\gamma_{m}}{1+\gamma_{m} \operatorname{coth}\left(\frac{x_{m}}{\lambda}\right)}\right\}
$$

where $\frac{d F}{d X}=C$ and $\lambda=$ const.
for $\gamma_{m}=0$ get $\lambda c \tanh \left(\frac{x_{1}}{2 \lambda}\right)$
as $X_{m} \rightarrow \infty$, answer approaches $\lambda c \tanh \left(\frac{X_{m}}{\lambda}\right)$ ier not quite a doubling
followng $p .147$ \$143 mow do $\cosh z^{*}\left(F+\gamma_{m} \frac{d F}{d z}\right)$

$$
\begin{aligned}
F+\gamma_{m} \frac{d F}{d z} & =\frac{b}{a}\left(1-e^{-a z}\right)+\gamma_{m} \frac{b}{a}\left(a e^{-a z}\right) \\
& =\frac{b}{a}\left[1+\left(1\left(\gamma_{m}-1\right) e^{-a z}\right]=\frac{b}{a}\left[1-(1-a / f m) e^{-a z}\right]\right. \\
\text { Loploctioutorm is } \frac{b}{a}\left(\frac{1}{s}-\frac{1-y / \gamma}{s+a}\right)\left(\frac{s}{s^{2}-1}\right) & =\frac{b}{a}\left(\frac{1}{\left(s^{2}-1\right.}-\frac{s(1-a /-\gamma)}{(s+a)\left(s^{2}-1\right)}\right) \\
& =\frac{b}{a}\left(\frac{a+1 y)-\gamma s}{(s+a)(s+1)(s-1)}\right)
\end{aligned}
$$

$$
\operatorname{tor} \frac{A}{s+1}+\frac{B}{s-1}+\frac{c}{s+a} \text {, wan } \frac{s(A+B)-A+B}{\left(s^{2}-1\right)}+\frac{c}{(s+a)}
$$

$$
\text { gt } A=\frac{a f f-a}{2(a-1)}, \quad B=\frac{a f \gamma+a}{2(a+1)}, \quad C=\frac{-a(t)-\gamma-1)}{a^{2}-1}
$$

$\operatorname{get}\left(\frac{b}{a^{2}-1}\right)\left(\frac{6(\gamma-1) s}{s^{2}-1}+\frac{a^{2}-y / \gamma}{a\left(s^{2}-1\right)}-\frac{(y) \gamma-1)}{s+a}\right)$
Yiells $\left(\frac{b}{a^{2}-1}\right)\left\{(a-b y / a) \sinh z-\left(1-a /(x) \cosh z+(1-a / \gamma) e^{-a z}\right\}\right.$
Whoch cen also be oftained from lower rigit.
$\therefore C$ expres $V_{0}=V_{0}$ for $\gamma_{0}+V_{m}$ sefortop. 143

$$
U_{0}=\left(\frac{b}{1-a^{2}}\right) \frac{\left.\left(1-1 / \gamma_{m}\right) \cosh z_{m}-\left(1-y \alpha_{m}\right) e^{-a z_{m}}-\left(a-\gamma_{m}\right) \sinh z_{m}\right)}{\left(1+\gamma_{0} \gamma_{m}\right) \sinh z_{m}+\left(\gamma_{0}+\gamma_{m}\right) \cosh z_{m}}
$$

Seep. 148
 $G \frac{d F}{d z} *\left(\sinh z+\gamma_{m} \cosh z\right)$ by $\left(1-a b-\delta_{m}\right)$

Simpler evoluation
$\operatorname{for} a^{2} \neq 1$

$$
\begin{aligned}
\text { O}^{*} \cosh z & =\frac{d \varphi}{d z} \sinh z \\
& =b \int_{0}^{z} e^{-a y} \cosh (z-y) d y \\
& =\frac{b}{2} e^{z} \int_{0}^{z} e^{-(1+a) y} d y+\frac{b}{2} e^{-z} \int_{0}^{z} e^{(1-a) y} d y \\
& =\frac{b}{2} e^{z}\left[\frac{e^{-(1+a) z}-1}{-(1+a)}\right]+\frac{b}{2} e^{-z}\left[\frac{e^{(1-a) z}-1}{1-a}\right] \\
& =\frac{b}{2\left(a^{2}-1\right)}\left\{(1-a)\left(e^{-a z}-e^{z}\right) \mp(1+a)\left(e^{-a z}-e^{-z}\right)\right\} \\
& =\frac{b}{\left(a^{2}-1\right)}\left\{e^{-a z}-\cosh z+a \sinh z\right\}
\end{aligned}
$$

QiEID.
Simitarly $\frac{d y}{d z} * \cosh z=$

$$
\Leftrightarrow \frac{b}{\left(a^{2}-1\right)}\left\{-a e^{-a z}-\sin d z+a \cosh z\right\}
$$

for $a=1$ get for $\varphi^{*} \cosh z$

$$
\begin{aligned}
& \frac{b}{2} e^{z}\left(\frac{e^{-2 z}-1}{-2}\right)-\frac{b}{2} z e^{-z} \\
& =\frac{b}{2}\left(\frac{e^{z}-e^{-z}}{+2}\right)-\frac{1}{2} z e^{-z} \\
& =\frac{1}{2}\left\{\sinh z-z e^{-z}\right\}
\end{aligned}
$$

$4 / 15 / 65$
Now counoder $F(z)=\frac{b}{a}\left(1-e^{-a z}\right)$

$$
7 \text {. promptly also } \frac{d F}{d x}=c,\left\{\begin{array}{l}
\frac{d z}{d x}=e^{\alpha x} \\
111 \\
\frac{d x}{d z}=e^{-\alpha x}
\end{array}\right.
$$

This cosewas solved in the 6/5/61, 6/7/61 notes
$U_{0}=V_{0}$ requires $\left[F^{*} \cosh z\right]_{z=z_{m}} \quad$ for $\gamma_{m}=0$
old wet hod was $L\left\{\frac{b}{a}\left(1-e^{-a z}\right)^{*} \cosh z\right\}=\frac{b}{a}\left(\frac{1}{s}-\frac{1}{s+a}\right)\left(\frac{s}{s^{2}-1}\right)$

$$
\begin{aligned}
& =\left(\frac{b}{1-a^{2}}\right)\left(\frac{s}{s^{2}-1}-\frac{a}{s^{2}-1}-\frac{1}{s+a}\right) \rightarrow b\left(\frac{1}{(s+a)\left(s^{2}-1\right)}\right) \\
\therefore \text { get } F^{*} \cosh z & =\left(\frac{b}{1-a^{2}}\right)\left(\cosh z-a \sinh z-e^{-a z}\right)
\end{aligned}
$$

note that as $a \rightarrow 0$, this $\rightarrow b(\cosh z-1)$, as it should

$$
\begin{aligned}
& \text { Duredly } F^{*} \cosh z=\frac{b^{a}}{a} \int_{0}^{z} \cosh r\left(1-e^{-a(z-r)}\right) d r \\
& =\frac{b}{a} \int_{0}^{z} \cosh \tau d \tau-\frac{b}{2 a} \int_{0}^{z}\left(e^{\tau-a z+a r}+e^{-\tau-a z+a \tau}\right) d \tau \\
& =\frac{b}{a}[\sinh r]_{0}^{z}-\frac{b}{2 a}\left[\left(e^{-a z z}\right)\left(\frac{e^{(a+1) r}}{a+1}\right)+\left(e^{-a z}\right)\left(\frac{e^{(a-1) \tau}}{a-1}\right)\right]_{0}^{z} \\
& =\frac{b-}{a} \sinh z-\frac{b}{2 a}\left\{\frac{e^{z}-e^{-a z}}{a+1}+\frac{e^{-z}-e^{-a z}}{a-1}\right\} \\
& =\frac{b}{a} \sinh z-\frac{b}{2 a\left(a^{2}-1\right)}\left\{a\left(e^{z}+e^{-z}\right)-2 a e^{-a z}-\left(e^{z}-e^{-z}\right)\right\} \\
& =\left(\frac{d}{a z 1}\right)\left\{\left(\frac{a}{a}-1\right) \text { auth } z-\cosh z+e^{-a z}+\frac{1}{a} \sinh z\right\} \\
& =\left(\frac{a}{a-1}\right)\left\{a \sin z-\cosh z+e^{-a z}\right\} \text { QED }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \gamma_{0}=0=\gamma \text { ama result on } p \cdot 146 \\
& U_{0}=\left(\frac{b}{1-a^{2}}\right)\left(\operatorname{coth} Z_{m}-a-\frac{e^{-a Z_{m}}}{\sinh Z_{m}}\right) \\
& \text { for } \gamma_{0}=0 \ln \gamma \gamma_{m} \ngtr 0 \text {, set } \\
& U_{0}=\left(\frac{d}{1-a^{2}}\right)\left(\frac{(1-a) /\left(\gamma_{m}\right) \operatorname{coth} z_{m}-a+l / \gamma m-\left(1-a f \gamma_{m}\right) \frac{e^{-a z_{m}}}{1+\gamma_{m} \operatorname{coth} z_{m}}}{1+}\right)
\end{aligned}
$$

and/or $\gamma_{0}+8 m$ both >0 get

$$
U_{0}=\left(\frac{t}{1-a^{2}}\right)\left(-\frac{\text { same nests }}{1+\gamma_{0} \gamma_{m}+\left(\gamma_{0}+\gamma_{m}\right) \operatorname{coth} Z_{m}}\right)
$$

as $\mathrm{X}_{m} \rightarrow \infty$, limiting expersoon ins

$$
U_{0}=\left(\frac{d z}{1-a^{2}}\right)\left[\left(-a b+b-\tanh z_{m}+a b\left(\frac{e^{-a z_{m}}}{\cos z_{i}}\right)\right]\right.
$$

$4 / 15 / 65$
Note that if $\frac{d F}{d x} \equiv C$ and $\frac{d x}{d z}=e^{-\alpha x}$

$$
\frac{d z}{d x}=e^{\alpha x}, \quad z_{2}-z_{1}=\int_{x_{1}}^{x_{2}} e^{\alpha x} d y=\left[\frac{e^{\alpha x}}{\alpha}\right]_{x_{1}}^{x_{2}}=\frac{e^{\alpha x_{2}}-e^{\alpha x_{1}}}{\alpha}
$$

and, stating from $x=0$, we loved hone $z=\frac{e^{\alpha x}-1}{\alpha}$
Then $e^{\alpha x}=\alpha z+1$ ant $e^{-\alpha x}=\frac{1}{\alpha z+1}$

$$
\therefore \frac{d F}{d z}=\frac{d F}{d x} \frac{d x}{d z}=\frac{c}{x z+1}
$$

At is remarkable that Ioplece tranforms are not given for $\frac{a}{t+t}$ or for $\log (t+b)$
$\operatorname{l.g} \cdot \operatorname{would}$ need $\int_{0}^{\infty} \frac{a e^{-s t}}{t+f} d t$
This initzalis obviously finite,
but there does nos seem to be a comentional closed form for this.
note that $\int \frac{e^{a x}}{x} d x=\log x+\frac{a x}{1}+\frac{a^{2} x^{2}}{2 \cdot 2!}+\frac{a^{3} x^{3}}{3 \cdot 3!}+\cdots$
\therefore better to use $\frac{d F}{d z}=b e^{-a z}$ as on previous page
This implies that $\frac{d z}{d x}=\frac{c}{b} e^{a z} \quad$ for $\frac{d F}{d x}=c$

$$
=\frac{c}{b} \exp \left\{b-b-e^{-a z}\right\}
$$

cannot get exprewovon interns of x
But, in last analysis, do not really need it.

$$
150 \quad \frac{d x}{d z}=e^{-a z}, x=\frac{1}{a}\left(1-e^{-a z}\right) \text { wher } x=\frac{x}{\lambda_{0}}
$$

From Taple I of $\mathrm{N}_{1} Y$ Yacod.

limitingeypertion os $\gamma_{m} \rightarrow \infty$ is

$$
\begin{aligned}
&\left(\frac{-1}{8}\right)\left(-3+0.762+3\left(\frac{.05}{1.543}\right)\right) \\
&=\left(\frac{-1}{8}\right)(-2.14) \\
&=\left.\frac{-3.0}{.097}\right) \\
&=+0.2659 \\
& \hline
\end{aligned}
$$

Commen. This $\frac{d x}{d z}=e^{-a z}$ offect applies to notorieurones but not nearly somuch, if at oll, to apical dendrite. Tor litter, better to use cortier (p. 144) resalt.
$4 / 15 / 65$
Calc. for $b=1 m v p a r, Z_{m}=1, \quad a=3, \gamma_{0}=0$

$$
\begin{array}{cc}
\gamma_{m}=0 \\
\text { foming } t_{0} \text { odnoof } & \text { then later } \gamma_{m}=2
\end{array}
$$

fromp. 148

> get

$$
\begin{aligned}
-V_{0} & =\left(\frac{1}{1-9}\right)\left(\operatorname{coth}(1)-3-\frac{e^{-3}}{\sinh (1)}\right) \\
& =\left(\frac{1}{8}\right)\left(3.0+\frac{.05}{1.175}-1.313\right) \quad \frac{3.043}{\frac{-1.33}{1.730}} \\
& =\frac{1.73}{8}=0.216 \quad \text { Wwich apees with } 1961 \text { calc. }
\end{aligned}
$$

This is souguly haef of that oftained for $a=0$
Now, set $\gamma_{m}=2$ fortunately $b=1$

$$
\text { get } \begin{aligned}
U_{0} & =\left(\frac{1}{1-9}\right)\left(\frac{(1-3.2) \operatorname{coth}(1)-3+2-(1-3.2)\left(\frac{.05}{1.075}\right)}{1+2 \operatorname{coth}(1)}\right) \\
& =\left(\frac{1}{-8}\right)\left(\frac{(-5)(1.313)-1-(-5)(.043)}{1+2.626}\right) \\
& =\left(\frac{5}{8}\right)\left(\frac{1.47}{3.626}\right)=\frac{7.34}{8(3.626)} \\
& =\frac{2.03}{8}=0.254
\end{aligned}
$$

Thisforgmes, becouse, swice $\frac{d F}{d z}$ falboff towand periphery, change slopefactor should hone less pfoct.

Reversed $F(z)+F\left(z^{\prime}\right)$

Qualitatiody, the effect is simuilar to Vmeffect $^{\text {p }}$

411665
Should toy to write this up brifly, hi first cousoder Fwo more points (1) Car max eyte for a smoll nemon
(2) Therer too regron nemron of XiY, Cacal Pops.

$$
\text { eg. fo } T=\infty \text { of N.Y. } F_{g} \cdot 6
$$

$$
\begin{aligned}
& \text { slift due to } \\
& F(z)=b z
\end{aligned}
$$

$$
F(z)=b z
$$

 then $V^{*}=0$ in both regious
aul the orly difference lettwen Argront Brepion is that $k_{b}>1$

$$
k_{a}=1
$$

Fhis con be houlled mort eorily hy relefungy Z in Bregion $\begin{aligned} & Z^{\prime}=k_{t} Z\end{aligned}$

$$
z^{\prime}=k_{b} z
$$

This uill clange $F(z)$ to $F\left(z^{\prime}\right)$ in
depol.

for $k_{B}=2$
ie $F\left(Z^{\prime}\right)$ hes one slope in Averoon ot holfslope in Bregion

OKnow. Oriquinally amole misitatae s setting forst intsule equal to $b-\{b \cosh A-B$, chernmas

$$
\begin{aligned}
& \int_{0}^{A} b-c \cosh (z-r) d \tau+\int_{A}^{z}\left[b-A+\frac{1}{2}(\tau-A)\right] \cosh (z-r) d \tau \\
& \begin{array}{l}
=[b \tau \sinh (z-r)]_{0}^{A} \\
-\int_{0}^{A}-b \sinh (z-r) d \tau \\
\end{array} \\
& =-\tan (z-A) \\
& +b \cosh z-b \cosh (z-A)+b-A \sinh (z-A)+\left[-\frac{b}{2} \cosh (z-z)\right]_{A}^{z} \\
& =b \cosh z-b \cosh (z-A)+\frac{b}{2}\{\cosh (z-A)-1\} \\
& =b \cosh z-\frac{b}{2} \cosh (z-A)-\frac{b}{2} \text {, whishagrees with rosult at sight. } \\
& \begin{array}{ll}
=b(2.352)-\frac{b}{2}(1.543+1) & =\frac{2.543}{1.271} \\
=b=0.5 \\
& z=1.5
\end{array} \\
& \begin{array}{l}
=b\{2.352-1.271\} \\
=b\{1.081\}
\end{array} \\
& =b\{1.081\}
\end{aligned}
$$

Control $U_{0}=b\left(\frac{0.543}{1.175}\right)=0.462 b$

$$
\text { Prodifed } U_{0}=b\left(\frac{1.081}{2.129}\right)=\frac{0.1031}{0.508 \mathrm{~b}}
$$

$4 / 1465$
Calc $F^{*} \cosh z$ for $\frac{d F}{d z}=\left\{\begin{array}{l}b \text { for } 0 \leq Z \leq A^{155} \\ \frac{b}{2} \text { for } A \leq Z \leq Z_{\text {m }}\end{array}\right.$

$$
\begin{aligned}
& \text { or } F=\left\{\begin{array}{l}
b z \text { for } 0 \leq Z \leq A \\
b A+\frac{b}{2}(z-A) \text { for } A \leq Z \leq Z_{m}
\end{array}\right. \\
& \begin{array}{l}
\text { Toy } \\
A=0.5 \\
z_{m}=1.5
\end{array} \\
& \text { or } b Z-\frac{b}{2}(Z-A) \text { for } A \leq Z \leq Z_{m} \\
& \therefore F^{*} \operatorname{cooh} z=\frac{d F}{d z} * \sinh ^{2} z+F(0) \sinh z \quad \text { sep. } 132 \\
& \int_{0}^{z_{m}} b \cosh (z-r) d r-\int_{A}^{z_{m}} \frac{b}{2}(r-A) \cosh (z-r) d r \\
& =[-b r \sinh (z-r)]_{0}^{z}-\int_{0}^{\left.-b \sinh (z-r) d r-\left[\frac{-x}{2}(\tau-A) \sin (z-r)\right]+\int_{A}^{z}-\frac{t}{2} \sinh (z-r) / z\right)} \\
& =0+[-6 \cosh (z-r)]_{0}^{z}+(x)(z-1+())+\left[\frac{6}{2} \cosh (z-r)\right]_{A}^{z} \\
& =b(\cosh z-1)+b \operatorname{thc}(\operatorname{zta} A) \frac{k}{2}(1-\cosh (z-A)) \\
& {\left[F^{*} \cosh z\right]_{z=z_{M}}=b\left(\cosh z_{m}-1\right)-\frac{b}{2}\left(\cosh \left(z_{m}-A\right)-1\right)} \\
& \begin{aligned}
& \operatorname{fo} \sum_{m=1.5}^{A=0.5}=b(2.352 \\
&A=1)-\frac{b}{2}(1.543-1) \\
&=b(1.352)-\frac{b}{2}(0.543)
\end{aligned}
\end{aligned}
$$

Seep. 165 for Slectri tiell popn
$2 / 16 / 65$
Visibd Reeset Brigttman's disploy as plammed for Wiami anatony neethigs next weok.

They asked we to go turu ny seasoung for then again. One niterestixig dovelopmen is that the symopses that we use for sexstanid of hove the lorgest umbr of vesicles handy, olso, they have less postsynaptic web ot are nore similas to presme of inhiditory syrapses (ayo-sonatic) elsenshere. wos coorsied abowt short-circuitimi of two neighbow sympses, ben this is totien core of frist hy tine sequence.

Tom phowed back of 5:30 PM. He was concenned about two points in priticulor. (1) Salmoroghai's Vorknin of adrenezic transmittors + thus bloderog untiol inhitution righ provide a means to locate which off there denhodondilir jius is adrenergiz; he leat me a repsint to lock. Why mani rectoon is tho to look for effec on gramile field, mist he Vedinigg population, no surdividual. This may lu possitle.
(2) I admitted to beroy uncestain if gramile pield losts as love es the inhitritione. Nust write gordon to see if he has evidence that field losts longer whon mhit. loste longer? At is min impression that the two effects start together.

Reese 4 Bightwan both very much concesmed to have a good phypiol. argumen, becouse ot thesevise the anotornists would ha eytremely skeptical.

If $j=t$ at terminal brower pont

$$
\begin{aligned}
& C_{j}=\sum_{k} C_{j k}\left[d_{j k} / d_{j+1}\right]^{3 / 2} \\
& C_{t}=B_{1} B_{t}+\left(\frac{d_{t-1}}{d t}\right)^{3 / 4}\left\{\frac{C_{t-1}+\tanh z_{t-1}}{1+C_{t-1} \operatorname{tarh} z_{t-1}}++B_{t}\right\}
\end{aligned}
$$

And, ingereral, $C_{j}=B_{j}+\left(\frac{d_{j}-1 / 2}{d_{j}}\right)^{3 /}\left\{\frac{C_{j-1}+\tanh z_{j-1}}{1+C_{j-1} \tanh z_{j-1}}\right.$
FromTableI $C_{t}=0.32+\left(\frac{1}{.54}\right)\left(\frac{c_{t-1}+0.26}{1+0.26 c_{t-1}}\right)$

$$
\text { If } C_{t-1}=1.0 \text {, set } C_{t}=0.32+1.85=2.17
$$

Mustwork fromsoma, to get the C_{j-1} volves

411965
Tom Recse still intom. I hod Dosotyy Type a frial typion of my rough $4 / 9 / 65$ drept of memo outhining the physiol. agment, and gave this to Tounbefore he left for the meeting. He pointed ont the arnacrine cells of fig. 191 on pozee 308 of Cojal as bening possithy very sinitlos in maunolion setina, to our grombe alls in tulb. Also, he slowdéme a Xeroxo/ a popes ly Hirata (arch. Histol. Jop. - Vol. 24, p. $293-302$ (1964) which reports the same structures that Tom \& Wiliton sport, lut withont identification of the pothway.

4/20/65 completed annal repport. Cosrected ersors oup. 154,155 4/21/65 finally urote lovig letter to Gordon, got off "pink" havel request, and letter to Lamport, acknowlegno his note. Phoue call from Dan Pollan o Dieter hux who wish to seeme soon. Egreed nept doy.

4/22/65 host niglis hopperied to thinh that spread from sumptic mon to suigh twidg conld he dealt withy, at least approy, by usniz $K \neq 0$ of $N i y$. Gical paper. Thon the G mipno promintig can be sem to be larger than Hehiol (munitrechack) Katz hod thought.

1 Mnis 1963
Volles p. 419
seloft
Let C_{j} be revape diviction to B_{j} of $\$ 1.959$ poper Af redially on prom soma, $\Sigma d^{3 / 2}=$ const asech haveh, Than, for NY:acalnervon, from twig in, $\Sigma d^{3 / 2}$ jumpo up byfoctor of 3 at eoch lrauch point, although earhier side franches are ohort.

Thiswos ok becouse here, $B_{j}=B_{j k}$, beconre of eqnal branding
Butseep. 163 with $\Sigma d^{3 / 2}$ preaewed.

Whistine, suppor $C_{0}=10 B_{0}=7.66$

$$
\begin{aligned}
& C_{1}=0.72+2\left\{\frac{7.66+01}{1.766}\right\}=0.72+2(4.4)=0.5 \\
& C_{2}=0.67+2\left\{\frac{9.6}{1.96}\right\}=0.67+2(4.9)=10.5 \\
& C_{3}=0.54+2\left(\frac{10.7}{3.1}\right)=0.54+2(3.45)=1.44 \\
& C_{4}=0.38+2\left(\frac{7.64}{205}\right)=0.38+2(3.05)=6.48 \\
& C_{5}=0.2+2\left(\frac{6.7}{2.3}\right)=0.2+2(2.91)=6.02 \\
& \left.C_{6}=0+\frac{6.22}{2.2}\right)
\end{aligned}
$$

Thusit is dear that C_{0} is not erifical, lunt Z is. Suppose thereare onemon pair of bovekes with $Z_{6}=.1$
Then $06=0.1+2(2.83)=5.76$
at $C_{7}=0+\frac{5.86}{1.58}=3.71$ which io logger Than lin in a smoller hanch

4122/65 Cole B_{j} ari then C_{j} for The N.Y. Acod. Nennone

Now, severse durection of use
seclolt $C_{j}=B_{j}+2\left\{\frac{C_{j-1}+\tanh z_{j-1}}{1+C_{j-1} \tan z_{j}}\right.$
becure Bjaplensto $d_{j}-1$ diontor, whit C_{j} to $d j$ dicurater

Then

$$
\begin{aligned}
& C_{0}=5 * B_{0}=3.83 \\
& C_{1}=0.72+2\left\{\frac{3.83+.1}{1+.353}\right\}=0.72+\left(2.84 x^{2}\right)=6.4 \\
& C_{2}=0.67+2\left\{\frac{6.4+.1}{1.64}\right\}=0.67+2(3.97)=8.61 \\
& C_{3}=0.54+2\left\{\frac{8.61+.2}{1+1.22\}}\right\}=0.54+2(3.24)=7.02 \\
& C_{4}=0.384+2\left\{\frac{7.02+.2}{1+1.4}\right\}=0.384+2(3.01)=6.40 \\
& C_{5}=0.2+2\left\{\frac{6.4+.2}{1+1.28}\right\}=0.2+2(2.90)=6.0 \\
& \mathrm{C}_{6}=0+\frac{6.0 \mathrm{~F}, 2}{1+6.2}=\frac{6.2}{2.2} \longrightarrow 2.82 \\
& G_{\infty} \text { inquisithouch }=\left(\frac{1}{2}\right)^{5}=\frac{1}{32} \text { of } 6 \infty \text { in trunk } \\
& \therefore \frac{\text { Termid mp } G}{\text { TAmpat } G G}=\left(\frac{1}{32}\right)\left(\frac{2.82}{0.77}\right)=\frac{3.67}{32}=0.115
\end{aligned}
$$

$\frac{\text { Termodmpig }}{\text { inhetemunnennite }} \cong \frac{0.115}{6.0} \approx 0.02$ which is close
to what kotgatennilidisaidoup. 4190 / It Puggo $(168(1963)$. sep dtom

$$
\begin{array}{ll}
G_{N} / G_{0 \infty}=4.6 & G_{N} / G_{N}=1.0 \\
G_{1} / G_{\infty}=3.6 & G_{1} / G_{N}=0.78 \\
G_{2} / G_{0 \infty}=2.3 & G_{2} / G_{N}=0.50 \\
G_{3} / G_{0 \infty}=0.94 & G_{3} / G_{N}=0.20 \\
G_{4} / G_{\infty \infty}=0.42 & G_{4} / G_{N}=0.09 \\
G_{5} / G_{0 \infty}=0.2 & G_{5} / G_{N}=0.04 \\
G_{6} / G_{0 \infty}=0.09 & G_{6} / G_{N}=0.02
\end{array}
$$

$4 / 22 / 65$
Dan Pollen, Dieter Luy of Amon Marsan come to see me. Pollen has concentrated on IPSP \& condritance change in Betzcells - which hone a 10 meg ΩR_{N} he finds for 8 to 10 mV IPSP a 40 to 60% conductance change
Lux has cove. en tranjien response to cusses prelse using $\log \left\{\sqrt{t} \frac{d y}{d t}\right\}$ and get $\varepsilon \approx \% / t_{0} / 0 \mathrm{mV}$ pretty straight from $t \approx r$ to $t \approx 2 z$
H toll Then that L as well as Scan cause deviations of shoved them ny theoretical plots. A said \& could probobly dig on the slope fudgefoctor for a few vohies of L of
They hove orly a monthor two bff to fish their analysis.
pursue pp 160-161 a little further to ask Sups conbritance an electrode or a condu conte change would see at differed points, where $G_{N}=6 B_{0} G_{0 \infty}=406 G_{0 \infty}$

$$
\begin{aligned}
& \text { at } x=x_{1} \quad G=G_{0 \infty}\left\{B_{1}+\frac{C_{0}+z_{0}}{1+C_{0}}\right\}=(2.84) G=3.56 G_{000} \\
& \text { or } G_{0 \infty}\left\{B_{1}+C_{1}\right\}=G_{1 \infty}\left(B_{1}+C_{1}\right)=G_{0 \infty}\left\{\frac{B_{1}}{2}+\frac{C_{2}}{2}\right\} \\
& =C_{\cos }\left\{B_{1}+\frac{c_{0}+z_{0}}{1+c_{0} z_{0}}\right\} \\
& \text { at } x=x_{2} \quad G_{2}=G_{2 \infty}\left\{B_{2}+C_{2}\right\}=G_{0 \infty 0}\left(\frac{0.67+8.61}{4}\right)=2.32 G_{0 \infty} \\
& \text { of } x=x_{3} \quad G_{3}=G_{300}\left\{B_{3}+C_{3}\right\}=G_{\cos }\left(\frac{0.54+7.02}{8}\right)=0.94 G_{0 \infty} \\
& \begin{array}{ll}
x_{4} G_{4} \\
x_{5} G_{5} & \left(\frac{0.38+6.4}{16}\right)=0.42 G_{0 \infty} \\
\left.\frac{0.2 .0}{32}\right) \approx 0.2 G_{0 \infty}
\end{array} \\
& X_{6} \quad G_{6}=G_{3 \infty}\left(G_{6}\right)=G_{0 \infty}\left(\frac{2.82}{32}\right) \simeq 0.09 G_{000}
\end{aligned}
$$

Notseturnaf to until $2 / 14 / 66$ j seep. 90 of Boob 8

Finished I-Equiateri ughindswith closed ends
I- A special cone of couston $d \phi / d z$
Fy., limiting values, polarity comment, musical
$I-B$ special case of exponential $d \varphi / d z$
II - Equobeo Cinlmints with Leaky Ends
I-A content dgplz

$$
\mathbb{I}-3 \text { exp. } d g / d z
$$

Now noel to unite discussion of cases where different Ko Xm are meted, as for pyramidal all, or ever mitoromon with several deritites one way if several another. Get, for example case that was used for Bighhys. Congress.

Abs, When two trees with differeri $d \phi / d z$ join at same soma, this can be handled ty sobaiz for $\gamma_{01}=-\gamma_{02}$ Ah otherwads, Oo is such that the nesslope of one matches the pos. slope of the other.

4/23/65 etc
Spent mearly all day witing doftt of a poper entitbed
Theory for Nouron Subjected to (Eyternal) Electric Fiuld. Succeadel impresenting allof theory for sealed ends. Nayt to to γ_{0} \& in effect. 2 abrofor d dld $z=$ con t sxp.

Afterwiting, thought that axon case should be for $\gamma_{0}=1, \gamma_{m}=1$
4/26 thru 4/29 Spent writing manescript for ditto of bove. Abo, some additional snuall calculationn. Abowrote gordon tolmiz
4/29/65 Talbed with Tom Reese \& Milton obow poper.
Toun raised several points to he analysed $\&$ didcussed.
I- With respodto graunle duration, cousider $\left\{\begin{array}{l}\text { (a) fizzhnz active respone } \\ (1) \text {) }\end{array}\right.$
$\{(G)$ sustamied ε thournilta action
II-Can we reject alternate whit. pathwoyp $\left\{\begin{array}{l}\text { (a) anitial axon collatoral direct } \\ (1) \text { mitial ayou collatrads to gromule }\end{array}\right.$
III- Grambe cell active or passore (ldo we ned inturtition of deop end feels) $\left(\begin{array}{l}\text { is gambe cell body d prop proedss eis }\end{array}\right)$
Tomfeels evidence stronges for mitial see to gronule poth, than fa gromile to mipith th.
I(a) failureto nivode soma could he due to inhit. os to posivie soma, or to log electoctoner length (gramuledenhritiediam $\approx \frac{1}{4}$ that of mitial : $\operatorname{forsame}$ matorxals, $\lambda \frac{1}{2}$)
(b) Butcould hone sustamied E r act lihe generetos poteutiol with occasional firing ofale

II (a) would not explain field would couphict writrDale privityal, would require
 such os Yanawito LOT does not add GIPSP prodnal hy Conulssone. Gquen o al periodir antidhonir followng \& Mockny.
(b) also.

Orsego, F. Crch. Dtal. Bool, 1961, 99 446-465
$1962,100 \quad 1-16$
Twitle balb.
Elpoper opparenty surgestos gramule cell as inhit. internemon

Hirata's fitle
Some obsewations on the fine structure of the syropses in the olfactorg lulb of the morse, with particular reperence to the atypical syvoptic Corfigurotions.
(Def:of Anat., sch.ol Med; Niigata Unir, Niigata Directors Prf. H. Koikegami and Prof. T. Yamamoto
The Reptilion Fordramin I-Thereyator Pothera ant Cotical coas in the Twite $425-445$
II. Electrical activity nithe Qlf cetory Bulb. 446-465

Orrego p.462-sequence of rents in mitial cell
p.463 - sramule cell sexited ly reament ayons micludes iden of incrooed contios ${ }^{2}$ is. differertial sensitior to toodonass.
Qerop. 464-minh spatial smumatrion in glomeruli toovercane depreswon follong provions syuptic activity in glomesuli.
Propertil mival 100
p. 15 grande cells man lune a tomie whith actinity.

OnegoIII-CrorsConnectrons between the offoctory lulko and the cortical oreas in the furtle.
Orrego IV -pp17-30 Sbectrical Qctirth in the turthe Cortey.

5/3/65 final qush with Tom Rese \& Wieton Beigatuman
Hirata, Arch. histol. Top. (archionm histotogicum joponiamm)
Yukio Vol24, \#3 (feb-1964) 293-302 Yukio Vol24, \#3 (feb-1964) pp 293-302 title at left.

Andres - Zeitscrift fir Zellforschung 65, 530-56, (1965)
(mir. of Kanazawa. Wed.Seh,, Kanazara., Sthikawaken, Japan)
Yaunamoto, C, Yamamoto, T, Awama, K. (1963)
g. Neurophupiol. 26, 403-415

Luhititory Systems in the Cefactory Bulb. Studied.ly futracellular Recording.
neblit

Ploce emphosis on | anterior. Commissure |
| :---: |
| AC |\rightarrow intermourors \rightarrow dosal

They quote Kent Hagbath 1955 on $\hat{}$ secillory anl Orrego (1962) ard ftal. Burl.) onturtle.
Yomanoto work on roblits.
p. 405 Chtracellular spithes in presmed witialcells 1.7 to 2.6 moser also could see IPSP followniz. used reversal deptra fotd potential as one method of ideritificaton. 0.8 to 1.2 user latency.

This IPSP essoc. with intin. A could be elicited withstine sheng ths below thresh. for apan o/mit in question (rny note, this is evidence for spread of eppect, eig. thm intomempme) They

* soy it is presumally due to ayon collaterals o/ neighbornoy mithalalls. (p.406) latercy of thic conse - IPPSP sugfent niterneeurons to then (exatet shytunically Cy a sugle LOT nhock

In deper loyers - Yomamoto et it. fand LOT shoch set ups surgle spine or spitetiain supesimposed on prolonged dopol. Latency of uswally 3 nusec or more. It is esp.cbar that These spithes do wot interpere with this epsp; thay pomit to sumilarity to Renshow cell.
Fogs. $3-B+C$ show repe tinisy in seopp. to suzgle LOT shock. Conclude that at leon some of these deep cell firmigs paiticipate in geveration of recurren inhit. They are connting there spiles, rother than the depol. as their sign.
Osthodromic (elpetony epithelunistin) also comprobuce mital ipsp, bie infer not monosyngotic op 407-409 The dup loger cells do not show the 1PSP.
p. 409 dami that AC repet. stmin buitds op IPSP minh
better than LOT repst. stin (ris abs fits well for our mobe)
p.409-410 They areconcerned that LOT antidromir does not add IPSP to thot of AC stirs, this is problem for them with colloteral idea, hit not for us, where nitial mol fire to produce offect. Ammodel superwor to theirs on these two conts.
po 411 hail tolocate inhilitony intomernans. s. unedexthacell veondng
\therefore They are led to postulate Fwolkinds of internemoro, shoun B_{1} and B_{2} in $7 \mathrm{y} .100 / \mathrm{p} \cdot 412$
He hes B_{1} inturitaitital all \& B_{2} intibit Tre LOT intemencone
Thus ke virohes 3 knids of internessors, A, B_{1}, B_{2} pe'tB Thair A is sunitas to Orrego's sromile cell.

Yamanota p. 413 pain on the LOT alro have centritegal fitiers, Which, Tom soyp, green of al got rid of liyg digen.

We conogree witir mweh of their discussion. Howns, They missed the possitibity of mitial secondanies \& thin, focused on recursoin colloterels of rnitial alls. This is the crucial difference.

Deepcells not stoted to he gramile, hit sonee are clained to to internediatas of I PS Pgeneratin. They have a slour dogol. \& sometrissespe. Spithes. (Bo here we hare to worxy obout centripuigal fines (N)

When orthodromic fenentes IPSP Olone, we cen assme tho? neighborr mitrd cells did the job, via gromule.
The fomanoteo story is slightly complicated hy tharifuiding the deop loyercells mostly mintuited ly AC, hint some activatel. Their explanation is a possitle ove, trid also problem of contrifongaf fitos.
robits
Twoproper by Green et al. in Neverophrsiol.

$$
\text { N4 - Necty } 1962
$$

I Green, Mancia \& vor Baungaston 467 - 488
II Banngarten, Green of Wancia 489-500
Manititle "Recurren tuhifution in the Olfactory Bulb."
Subbitles I- sffects of Antidromic Stin. Of Lat. Olf. Froct, II-sppets of " " "Conmissural Fivers

Greone al I Antidrom LOT
p. 467 - $\left\{\begin{array}{l}\text { LOT coutanis mitral axons } \\ \text { Commissural finers michide tufted ell ayons }\end{array}\right.$
p.471 the periodic folloung \& foiturg to follow at high fequencier coned be due to accuin of long losting \& havismitter.
p.474 Symeptically droven artion pootutidels in eytspley, did not follow well, had longlatancy, where associated with second neg peak of evoked action pot. 3 stolsomar
bittormp 474 - mimivitory porse of Les LOT presere even shem mitial cell in question did not fire

1. 476 They searched for a Renshow typecell 7 anil noceles with such lursto. Found efow spikes in ext ppley which they ottyrits
p. 477 nonseq. - They soy tha be enne mitalcells did not followi beyol $100 / \mathrm{Pr}$. The mhiteffer did not requie nital cell body discharge. Abit agpec; insar comed beprolonged rosult
1.478 Fg .8 C is chimed to be a gromule cell

19 $478-481$ - reflected dirchase bock ow ayon
p,484 Evidence for duict mintititonly ayou collaterals.
(a) shant litency
 Bu onr model does not verine 1 Rem to Pollons.
(c) nuasisie nature, nicluding abso tufted of growald cells
(d) prolorged thine of g which suggests acan of sulsturice rither than vistainal Renehaw cell dedelearge.
(Bu we con hane this to.).

Qbso, fornd no intesaneurons o strychin alol rut intefere
Rule ow remote mhitition beeon e
(1) this of Glochs antidsonve nivasion
(2) chole spike, not just A spitre dexoppeon.

Thay will disans Dale's low inn net poper.
(A)
(485 thoy dam tha the periodrefollowns
ishond to explain cnith miternensors

But this isprecisely where our modol comes to
rescue, beconse, when mitsals foil to fise, the drine to intemeuson also is cis off Cuil of course, the whole pop. coonit he Ayjuctronoris \& Theidata suggests moybe it is e?
485 uppertt They thin duro coll aterill lettes, brimse a cueak angmes that as SD spite mublochs, get reflecter discharge to donble the whirition.
p. 486 they do mentiron Harthine A edge perception.
${ }^{172}$ Tomejarton et d Woper II
Connissudal Ayp?.
Tutted celle provide oiffnt thon conmissure to eppsintecult. Rey arsme tho their A.C. Stion is antidromullo toflod.
Found noantidroune invasion of tuptad cells, nor muchiof ary orthotrour fisms o/ grameícells.
Repat. Stivin of Comonomefitors produceg mitir of alls of extepley, mitial \& gromble loyers

Amporow to bear in nin the Volverdez rexilt down Fupted cell ayous not gonjz non-stop Thum connissure. This explanis wigg tuplod cells dod not fire i spoits collateral story of this poper?

$$
\text { p. } 498 \text { remashs on Dolefrincipal }
$$

Yomomoto \& Lwani 1962 (Pnoc. Gap. Acod, 38 opperently then did not use internevion

Phitlips, Powell + Shophent - I. Phono ol 168 , 65-88 (1963) onp.85 bottorm, they argke that latency of (3 mere minn) souggeste to them there mat he at least one intemenon?
p.86 inkit. activty somatrios sefflimiled yos in Toyt/fy: 7-6

Shepphend $\phi .97$, nihiluition follow, single even lost frors 33 to 53 msec.
p. 99 cellrecovers from nopoctong period bofore onset of the low tasting supprivon of excitabilitej; this is cited as evidence that this is not just as prolorged sefractory period.
incose of weak olfar tom weme shode, pat reconery a trusee of deloged urresponsorewens blyoul 11 mon p99- Shophent rin zrdpops will fovor intute ly moans of degper lyso newsons to nitiol secondaries.

Ehepmerd - Nanoual Systeins Controthing Whital Cell Exaitability.

 pi 106 soma little evibence of shaththiz suppremion of

$$
\text { \& p. } 114 \text { Distingus hes from/Censhaw cell \& Suggests }
$$

$1745 / 4 / 65$
Question - Slepherdp. 105 Fig. 3
shows@thismitralcall not nivadd (b) (d) F(d) it is invoded

Mg question - do faccopt this intyo, or is a lelange in the poppulation nesponse density? Con my Preoretical model poodict whi should hoppen whon neorest all hoppens to fail? Not tasily, becense taspine uniform dersity leadny to spherical equipotential contorass. Then, fo suppose I min superimpose minus an indóvidual event. This mplies an imporian theoretical problan to be solved for recording of sromp
$5 / 5+5 / 6$
Cassyng on dialog with Tom Reese
He has been concerned about distinction between dewitt, of ayous. at my suggestion, he looked up Bodian's popes in science P (dow 2 years ago) where bodian points on the cell body is really not relevant to doubite - axon distinction, be draws the jer where the action potential arises. Tour has been unich concerned abort affological csiteriva for dendrites as opposed to axons. Wy point is that Cajal called both gromile o vital dendintes, dendrite, though it is miteresting that orepp.661-662 Giealnonght that denbites of ritarnal granule cells, whom articulate with denbites of rivitral cells, delver excitation. \& that in this sense, thesedevbrites would play the sole of an axon aylnides, been though it does not hove any of its attrotuites. A singgested to Tom that dendrites are (1) What Cajal A others originally named as such, and (2) the functional resolution maybe that ayous propagate impulses, but dendrites are devoted to synapses (now we allow both directions, where previously we though only of recepticrefen) of the graded integration of synaptic effects. A pointed on that although I do not accept the Grundfest dogma, I am uichined to behove that all expo sofar can be fitted with passive dendritess. Abs, A conuniced him that for sural Z, pastie denbitic dypol. can he sufficiently spithelike to seem adequate as a synoptic trigger (thisponit hod worried hin : he Thought. the presyneptic elements would hone to have an axonal action potential, and of persuaded him that this is not to he taken for granted). Goren this point of bier, he likes the idea of assmanng all the mitral deridrites to be passive, Ain intis sense, non-sayenal. Cover
this miterents tin elso because hesees douho-dendritic syreppes in the glomeruli, where the mitial pruiary dondite tufts appear sometimes fresyroppic. My prutt is tho, sofor, Icon apploin allso-callet evitence for deublitic umpulse propogation as possive, bul thone isporsthe tha there uight be a low deusity of active protetes which could provide local respouse effects, rother than pastallonenspiken., All this is selevais to the supposed anotomicel bosis for presyngptic intibition, where, accondur to Tom anatomists have simply assuned, when they see $(A)(B)(\odot)$ that C must be a dendrite becouse it is postsymaptic, tho B is \therefore an E eudring and that A ceduces the potenky of B. However accordniz to onr presen hoodel, B conl be one deubrite and A\& B coulthe postions of another dendrite. thaidentally, in our thodel, there is a sense in wish the mithel \rightarrow gramule could be collel presmuptic exatation of the ganula nuitral ayyspow there is abso a seuse in which the gramule \rightarrow mithal provides presynaptic intit. of the mitral \rightarrow gramile synapees.
Tashoforwithing (1) Sequace oferento ouvisioned, avl(2) than than refley collateral story.
$5 / 7 / 65$
Tour \& Wilton come over to toll same more
Tom also hod roughed ont some parogroplss where he felt that mitral secondaries con he regarded equally well as ayou collateral. Bit A demurred someisho. How about dendrites being trees, as Coil tothers soy \& That me brooden our concept of dendritic for to vidude synoptic sendro and recering osuell as jus synoptic receive. thpaticulor, whore untral dendrites a gromile dendrites as both prorymoptic o postsynaptic in for. An Someways, all this seems simplest if there is no, tine action potential in dendritic membrane. Then one could agreewith Audion Science 137, p.323(1962) at mako the distinction at Thepoin where impulses arsine. Tom t Wilton kep worrying boo how to answer thou anatomists who ask them to justify denbro-deudritic by justifying derizuation os dendirte rather than Soma.

Gut reread Bodian. I am reinforced in feeling That our point should be to queralize dendritic function fur the to permit synaptic sendrig. This deserve to be mode explicit in a separate paragraph.

Ochi, f. Jop.g. Physiol.13, 113-128 (1963)
Olfactory bulb response to antidromic offoctory tract stimulation in the robbit.

Revon 2.D. M.
Banngarton, Green, Mancia EEG \& Chix Nourghypiof.

$$
14 \quad 621-634(1962)
$$

Slow waves in the offoctory bult and their relation to untary discharges.

Gamamoto a furomi -proc. Jop. Qcod. $38 \quad 63-67$ (1962)
IPSP is incolly an eashy propublication of what is done more feally in I. Naurophysol (1963)
p. 558 2und

KHCudres - Zertshripty fun Jelfforseloung 65 530-569 Prespectine of the poatsynaptic structure (iwal) in the grombeprocosses, the synopses in the ext. pley loger arevery similar to groys type II \& may he presuniot to be intibitong. ... nutubitoy 4 dismatititog for The fedback or coithel fen coull mitially in wohre dendro-ayenie (quinite (sintrad) sprepres, but more mpost hou trocle the syoppos ou the gramile poribarya \& depp denlites.
$5 / 10 / 65$
An impostor point in presentation of multiple worknig hypotheses, is not to empliosige that there is an ansues to everithnoy, bile to empliasize that certain alternatives will be ruled ow by certain observations. th other words, it is a way of stating present unceitointios, and of pointing to expermerits which can rule ow some of the prossititities. Thur, in lose of gromile of mitral cells, we must' heep open both active t harare dendrite possibilities. Complete poisonity

- gamine cell coned he disproved iupminiciple, Dy recording mode from undeniable grounlé cells. Mitral secondary properties could be settled by mitracell recordnogo near their periphery. etc.
late in toy, received letter from Gordon, with tracuigp, in which he says tho period III is shoot aid is followed by period IV, with reversed polarity. He guesses that period IV is either generate by the initial cells white they are intritited, or possibly granule cells pune? memibly durny some sort of recovery phase?

Re the $5 / 14 / 65$ dropt,
middle of poge. Zuin thiors sentence statnig, "Becouse" doserves more empharis, suchas itators or o leos a ment At,

Atunk a new tt woul he good. Then olso, one could aidd to evd of meeedrig it that only the gramile cella can provide the neessary cose comductance between the two regions.
$5 / 10 / 65-5 / 14 / 65$
This week we pushed thus a complete draft of proposed note to Science + sen off a xerox copy to gordon on $5 / 14 / 65$. Sill needs work on the references and probobly some revision + possibly even amplification.
5/17/65 Let Phil Nelson read \& spent day in library checking some of the references. Phil was not clear on whet her the too kivids of invitation would not produce current flows that world intafere with each other. Necessary to point on why the gramole current a voltage would he sig. greater than The mitral. Qeso, nay need footnote to state tho assertions are based upon a compritational simulation. The presproptic intititions implication did not get across. Wop wan to emprionze granule cell core conductance thru mitralbodylager; Tom says this is very impressive in some of their pictures. Also, probolily should more explicitly relate high frequency. of golgi spines with high frey. of the small things we are collet geminis in the es. The perisatre frosting in non-fiswig uni be more clearly distionished pom alternations, which Phil regards as explanioble by voprotong period.
An tiring, found Ochipoper interesting.

Inuis soon worite up the points contrasting sighle verron of top of signch o asyuch rensous. This slanted dopole of $7 . R . \rightarrow$, if it means anth r, could mean an asyuderonous sequence alorg aloyes
To test such idoos of also effee of numher of cells meed to compute values along a grid'of parallel ases, fo permit sipespositions?
Ayes

Fors, superpoz difperiv munters of syncharonors slements a sarno dopth
Then, vary a bopth
(b) symeleroury (is.staggered

5/20/65
Talhel with Karl Fiank - briolly aboul Toel Peserthal's sugle dipole model and then about on mamsuipt, Pintersesting, bue not a basiz model (What atout other sode of dipole? Pliel suggested the slantet dyole vadly weans a convically arrarged set, but then get diffen fietd. aro, wed the formila for $r \gg l$, i, exchuded wide spaceng. ttis time that If prblosh the large t suall scale pictures donewith yeame of Egra.
K.F. P Phil comments
K lihes idex of passire denditic. nole \& phil pointol ow that groded effec is consisten with NA joar worle.

$$
\begin{aligned}
& \text { costallo } 8 \text { Katy }(1954) \\
& \text { Lilly } 1956
\end{aligned} \frac{124}{134}, 586-604
$$

K painted ous that periodicfismig non firing could be liy means of offeren to ordmany f. We comot eosiely eychde this, exop possitilyaitans af protobilitios
Also, he notd that even when antidromic Glochs ni one neuron, f could jel thruby negubors if they don't blode, which istrue; however, A am assund that pop.is workig togather uniler there conditions. Needs to be clearer.

They thunte recussen intitition meors via recussen collotronal. Phil sugeorted antojenetic. How obont self as voell as lateral tutibiticon.

\qquad
\square

$1+100$

 $1151(\sec)$ and

5/21/65
Tom brought over his friend, Forrest Weight, who had several questions. An particular, he readied that twos not consistent with field oromid single neuron o wondered how conte. Bpporently this is gonif to Ponce the issue oboe how f calculate the field potential. A begin to thank that If bettor write up a short note or this Foo. F Fold him a little abort it, That there would be concentric isopotential contours, that the potential would be cost. A cents if there were no sources at smaller radius.

$$
\begin{aligned}
& I_{e}=\text { cores }{ }^{2} \text { density in glider } \\
& V\left(x_{1}\right)-V(0)=-\int_{0}^{x_{1}} I_{e} d x
\end{aligned}
$$

Wethat of computation is to use soma dendritic motel to compute I_{i} ot then, from this congrate Vest. gelatine to son ce specific reference porto

$$
\left.2 \int \gamma+2\right) \times(202 x)
$$

$$
3 \text { sio }
$$

$$
\int_{0}^{4} \int_{0}^{1 x}-(9) \sqrt{2}-(k) V
$$

5/24/65-6/4/65..
Recervel Gordon's comments a suggested revisuans -
alvo. spen a little Fins with The literature
Fivally 6/1/65-6/3/65 ground out a fourth dreft, Tom revisnoy
the Anotemical part of of patched together of revised
the prices of the phypiological presentations.
Todoy we aim at a funal typhin for clearanance of to send to Gordon on Mouday ofter he phones us from Coldsping Haber.
6/8/65 sen to fordon c/o Gergelyg a Eिtina Fomdation also TR. - Godon on tephone expects to he here * 6/16 gondor midncet Tom a mitton to verore and pors
$6 / 15 / 65-6 / 18 / 65$ revisel anounscript with all anthorss prosent a On 6/(8) Tomg 1 thid to viropperate goreon's commis on plespits
$6 / 22 / 65$ furdel prost to completion of firial vorsvor.
$6 / 23 / 65$ How gordon it have mitil aboin $6 / 30 / 65$ to worle on main proper \& figures \& slodes

Pum anceospully $6 / 16 / 65$
This shows that passive membene with \mathcal{E} in deninte will worle. Hewrear, becouse gramle alls deypertion nitid change to 0.5 from 0.25 The foll off af the FP Neacativity, rachially ontward, conel he ane to SHCF which wight be farger thon for intital cell. duvierr of this cousides lething E be flat in the derbites., thy in new problen .8222

$6 / 14 / 65$
Decitod to hy a perh Gramle all rum forporive case, Bu also to rerm oligh nod. of hast weakly actine? granderem.

Previous Gamele rum were

$$
\begin{aligned}
& 64795.8215\} 9 / 15 / 64 \text { see pose } 84 \text { of book } 4 \\
& \left..8216\} \begin{array}{l}
18217 \\
.8218
\end{array}\right\} 10 / 6 / 64 \text { seeposer } 34 \text { of book } 5
\end{aligned}
$$

These used rery cool binctics 4 also subistantial untutition to preven micssion of axoual end.
Set up 65795.8219 as veryplight mod. of .8218 Here seduce NT to 51 fom 70 RHOSOM To 0.8 from 1.0

$$
\begin{aligned}
& \leftrightarrow 65795.8220 \text { IFAB }=+1 \text { prostine } \\
& \begin{array}{l}
\text { seement } \\
\text { posje }
\end{array}\left(\begin{array}{l}
8222 \\
8224 \\
8
\end{array}\right) \quad A C T=R B S Q=P B P R=.001 \\
& \text { effectively pantur sema }
\end{aligned}
$$

Quso $U A=U D=U S A=U S D=50$. insteod of 25 lecoure this whos $\Delta z=.14$ whoch in ample for 12 comparament
alao, charge (DT to. $02, N E J=4$ and oharzed $B E B$ cands.
65795.8222 6/17/65 flat E in onter 6
65795.8224 6/24/65 decreanig E in orter 6 tosminulate synopteistin from mitialsees.
All of these worked quite well. used flat cose for Fg. 10 of droft fr poper

6/15/65 gondon anviad Tundon monng.
Discuned with hin fiom in morns. Afternoon tied up witr tailfunl
contiog with APL disconsoo
furbshd Saeice dropt with Gordont Tom on 6/22/65
Worked with Gordon on figs. If droft for the nomi soter oner $6 / 23 / 65$ thim $7 / 4 / 65$
$7 / 2 / 65$
s tohe figures to art deportment, and moke sure of houniq slides seady for the trip. to Tolryo, dero mibt folrecore of Tohyo reservotions踳.

Qso, in Gordon's smingle uns de spridle wosh with Droud Ottoson, they oftained relations botweer frequeng of fising of stivtch - esp. lineashy incrowy stretch. also, with an anaes tiatue observed generata poten ord Recondwo were form nerve fiter in oil ; versus ref electore in the bath. \rightarrow

This neminids me alro to remenber problem of recosdng condition thad at dorsal roots ni thesis priblen. Coned explore these theortically some tine.

7i, IA

When a neuron is subjected to a gradient of extracellular potential, how can one calculate the magnitude and distrituetion of the resulting membrane depolarization and hyperpolarization? Given a theoretical basis for such calculations, are, the magnitudes of these effects sufficient to account for significant changes in neuronal firing probobilitis and firing frequencies?

Memo regarding manuseript entitled "Interaction between spinal motoneurons of the cat."

Dear Fhil,

This is very interesting. As I said on the phone, my principol comments concern the interpxetation of Fig. 2.

On Plirst reading, I accepted the argument on pages 7 and 8 (regarding Fig. 2), but, on reconsideration, I do not. Figure 2 does not show that "firing occurs at a lower level of depolarization than with the unconditioned response". The extracellular antidronic pield potential (neg. peak) is presumably of larger magnitude than the intracellularly recorded neg. peak. In other words, your word "degolanization", as you have used it, is not the some as "membrane depolarization".

My interpretation would be that the some interior would not simply ride with the extraceliular potential, because the soms interior is electrotonically tied to the dendritic interior. Thus, if the soms exterior has a larger neg. dip than does the scma interior, the net result is soma membrane depolarization, whereas, if the soma interior actually rode with the soma extexior, this would imply no net sona, membrane depolarization. It would be interesting to compare actual extracellular and intracellular neg, peaks for the same antidromic vallegy

In viev of this, it does not seem necessary to assume greater membrane depolarization at the trigger zone. This seems saier to me, because it might require rather special geometrie relations between active and passive cells to insure preferential degolarization of the axon hilloc.

The Journal of Neuroscience

The official journal of the Society for Neuroscience
Gordon M. Shepherd, M.D., D.Phil.
Editor-in-Chief
The Journal of Neuroscience Section of Neurobiology
Yale University School of Medicine
333 Cedar Street
New Haven, CT 06510
Phone: 203-785-4336
Fax: 203-785-6990
E-mail: jneurosci@yale.edu

Ridltrgius pow is hes ee good Theoraticioulongo to be ceble C_{\square} desizn some crucial experimenti (OTherurse he amoy lo deahnionly curt - psendoproplems 6

This is cestanily the position of ttodglim + Kat3, et al A does hone impas on the field _a good experiment, corefully interpreted, is irrefutable.

Homever, it does not necenarify follow That somenhat more olestracted problems ase not improstand. Thin of gibls of theoreticial prlysirits.

Bill sugpent That bey problevis are spmoptre tiamper functron and -goodexp.meamenement of λ ail τ

Ted Lewors wintel exemples of preliction that were confirmed. Actual! my 1957 papertwade prelictor tha were onfirmeno
Aso Ethachin Potoutiol. Also soma equelizarontos

Abso 1956 with Hunts

$11 / 21 / 67$
Mono regarding contrast in summation of digrolas and nultipolar components of neuronal fiefls.

Theoretical aspects and conjectured demonstration in case of spinal cord antidromic activation.

These notes recap. Old notebook notes from The tharch 1965, just before dendro-doubritic EM results become known to me. (\mid p $25-31,40-41,44-49,83$ Book 6)

$$
\begin{aligned}
\text { Zero order multipole }= & \text { paitchorge, say at } z=+l \\
\qquad(r, \theta)= & \frac{\theta}{4 \pi \epsilon}\left\{\frac{1}{r} \sum_{n=0}^{\infty} P_{n}\left(\frac{l}{r}\right)^{n}\right\}, \quad \text { for } r>l \\
= & \frac{\rho}{4 \pi \epsilon}\left\{\frac{P_{0}}{r}+\frac{P_{1}}{r}\left(\frac{l}{r}\right)+\frac{P_{2}}{r}\left(\frac{l}{r}\right)^{2}+\cdots\right\} \\
& \text { for } r>l, \frac{P_{0}}{r} \text { dominated }
\end{aligned}
$$

$$
\begin{aligned}
\text { Fist order multipole } & =\text { dipole: }+ \text { qa }+l,-q \text { at } 0 \\
\varphi(r, \theta) & =\frac{q l}{4 \pi \epsilon}\left\{\frac{p_{1}}{r^{2}}+\frac{p_{2}}{r^{2}}\left(\frac{l}{r^{2}}\right)+\frac{p_{3}}{r^{3}}\left(\frac{l}{r}\right)^{2}+\cdots\right.
\end{aligned}
$$

$$
\text { for } r \gg l, \frac{P_{1}}{r^{2}} \text { dominates }
$$

Second order nultipole $=$ quadrupole

Axial quadrupole: $+q a t+l,-2$ at $0,+q$ at $-l$

$$
P(r, \theta)=\frac{2 q l^{2}}{4 \pi \epsilon}\left\{\frac{P_{2}}{r^{3}}+\frac{P_{4}}{\left.r^{3}\left(\frac{l}{r}\right)^{2}+\cdots\right\}}\right.
$$

(Nate: P_{3} drops ont because of symmetry)

or proalbl plane arsargament
Fourth order multipole $=$ dodecapole?
Three orthogonal quadsupoles of equal strength

where $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are the dusiction cosines of the field point relative to the These asses.
(Note:' P_{2} drops ont because of symmetin)

$$
P_{2}=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)
$$

Relatrie to each octapole axis, have $\cos \theta$ as $\gamma_{1}, \gamma_{2}, \gamma_{3}$ adding the three contributions of $\frac{P_{2}}{\Omega^{3}}$, obtain

$$
\begin{aligned}
\sum \frac{P_{2}}{r^{3}} & =\left(\frac{1}{r^{3}}\right)\left(\frac{1}{2}\right)\left(3 \gamma_{1}^{2}-1+3 \gamma_{2}^{2}-1+3 \gamma_{3}^{2}-1\right) \\
& =\left(\frac{1}{2 r^{3}}\right)\left\{3\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)-3\right\} \\
& =0
\end{aligned}
$$

because $\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}=1$
Snice P_{3} term was abreody missing form quadrupole, This leaves P_{4} as lowest order term.

$$
\begin{aligned}
& \text { Now } P_{4}=\frac{1}{8}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right) \\
& \sum P_{4}=\frac{1}{8}\left[35\left(\gamma_{1}^{4}+\gamma_{2}^{4}+\gamma_{3}^{4}\right)-30(1)+9\right]
\end{aligned}
$$

For $\gamma_{1}=1, \gamma_{2}=0=\gamma_{3}$, get $\frac{35-21}{8}=\frac{14}{8}=1.75$
For $\gamma_{1}=\gamma_{2}=\frac{\sqrt{2}}{2}, \gamma_{3}=0$, get $\frac{35\left(2 \cdot \frac{4}{16}\right)-21}{8}=\frac{17.5-21}{8}=\frac{3.5}{8}=0.44$
$702 \gamma_{i}=\gamma_{2}=\gamma_{3}=\sqrt{.333}$, get $\frac{35(3 / 9)-21}{8}=\frac{11.67-21}{8}=\frac{-9.33}{8}=-1.17$

Auporton to remember that when $r \approx l$, one must use the expression

$$
\phi(r, \theta)=\frac{q}{4 \pi \epsilon} \frac{1}{\sqrt{r^{2}+l^{2}-2 r l \cos \theta}}
$$

for each pole, esp. for θ small.
Also, if wish to consider an insulating bombay at finite distance, can use method of singes. In particular, if consider only one suemplane romany, The potential at the bansodary will he exactly twice that which would be obtained for infinite extant. Af a curved boundary, need to. consider unequal images or chanis of images.

For summation of several muts, reed to know
(a) spacing of units in planers assay
(b) how mary planes
log.
(c) minder of units, either explicitormiploict
(d) orientation of units

Then $q_{p}=\sum \varphi_{i}\left(p-p_{i}\right)$

Most general problem would permit
(i) variable orientation of units
(ii) variable spacings ""
(iii) variable weighting of $P_{1}, P_{2}, P_{3}, P_{4}$
(IV) variable strength of mints
(v) temporal dispersion of ackivitig
(vi) different frequency components.
(vii) complicated boundary conditions

Consider now, antidromic activation of synergic group of notoneurons in lumbar region of cat sprial cord.

for group response. (Van Buran) positivepeals 0.4 to 0.8 mV neg peak 1.5 to 3.7 mV
Ratroof $\frac{\text { pos perk }}{\text { nog peak }} \simeq \frac{1}{5}$ to $\frac{1}{3}$
for snigle mit response. positive peak $\simeq 0.1 \mathrm{mV}$ neg peak $\left\{\begin{array}{l}2 \mathrm{mV} \text { close to soma } \\ 1 \mathrm{mV} \text { not soclose }\end{array}\right.$ Ratio of $\frac{\text { passed }}{\text { meg point }} \simeq \frac{1}{20}$ to $\frac{1}{10}$.
B group req attributable trainee to 2 to 4 nearest neighbors

Here is a crude mumerical niterpretation that L pit ompage 48 of old notebook.

Van Buren found gastrocurmius unclews to hove following approx dimensions
9.9 min long

eligsaid of sevolution has volmme approx 2.5 num ${ }^{3}$
Namber of cunts (lange moteremons) stated ≈ 370 chromatolised.
Hesaid chromatifysis density ≈ 160 pernmm ${ }^{3}$ of L_{7} also $\approx 180 \mu$ between cells
0 plus 630 permm ${ }^{3}$ belongni to other nusdes

Slob 10 uthick hase bohme $\approx 05 \mathrm{~mm}^{3}$ contains ≈ 8 units $\log _{\mu}$ "

Dendritic current complicates story, lin moyle con make The faint

add dix dipoles this wot
then ald sup dipoles this way.
Then compare spatial decrement even along axis
wellawry from dipole we hove $V(r) \propto \frac{1}{r^{2}}$

$$
\text { ie. } \frac{P_{1}}{r^{2}}
$$

Stionton p. 181 multipole $\varphi_{n} \propto \frac{Y_{n}}{\Omega^{n+1}}$ or $\vec{p} \cdot \nabla\left(\frac{1}{r}\right)$
where M is the number of dipoles in different bisections.
where Y_{m} is offer of cosies of angles between \vec{r} and the nape and the direction cosines of these axes.

Splenical or mults pole fielal
 cusve F of fig. 10 in 1962 Bioplup.g.
annj hinear Ie follog to zero at $R=B$

$$
\begin{aligned}
& V_{e}\left[\frac{(B / R)-1-\ln (B / R)}{B-1}\right]\left(-\frac{I_{s} R_{e}}{4 \pi b}\right) \\
& \text { or } \operatorname{Ve}(r) \propto\left[\frac{G B}{r}-1-\ln (b B)+\ln r\right]
\end{aligned}
$$

Note: $\frac{d V_{e}}{d r} \propto \frac{C-r}{r^{2}}$
where we are not too concenent obart values as $s \rightarrow C$

2/3/65 Phis Nelson called comparison wo l unit data
T Van Bunsen population data.
Bob Busk e with Plat
(Var Busen

\$610)VanBusen
phil
foetor of $20 \quad \frac{n o n}{p o s} \approx \frac{2 \mathrm{mV}}{100 \mu \mathrm{~V}}$
Chr, Van Bureau can see mut contributions to the negation th, bit presumably nit to the positivity.

Two lw eth with Phil Nelson (coffins onimoudoy

YOU WERE CALLED BY- \square YOU WERE VISITED BY-
\qquad waiting to see you
\square will call again
\square WISHES AN APPOINTMENT

RETURNING YOUR CALLis referred to you by:
WM 41^{102}
Left This Message: \qquad

Compere $\varepsilon=2$ in comperstment $\# 2$
with $\varepsilon=20$ in compation $\# 8$

$$
\begin{aligned}
& \text { stypsis }=.05 T \\
& \Gamma L 54 T=.25 \tau
\end{aligned}
$$

Refernor bock to pp 89 - 115 of Book 6
Perhaps should add perturbations to apt. 10
Butwehorealreody peaking (1) for \& in this

.103	2	in gt
.102	4.5	4
.102	10	6
.104	20	8

est. 0.14

$$
3 \quad \text { mp }+2
$$

11
6.5 mi yo 4
0.16

20 mi gt 6
0.143

40 might 8

$$
\begin{array}{ccc}
0.19 & \varepsilon=4 & \text { in (2) } \\
192 & 10 \\
& \operatorname{tm} 30 & \text { in } \\
& \operatorname{tg} 60 & \text { in }
\end{array}
$$

Should do rum with $E_{E}+E_{j}$ connected inn
O with appoppiate summer - See $p .95$

$$
\begin{aligned}
& \text { Compore } \varepsilon=2+\varepsilon=4 \text { a Cy } 2 \\
& \varepsilon=2 \\
& \frac{\text { slopeat hotpedk }}{\text { peat }}=\frac{.0705-.023}{(0.1)(.103)} \simeq 4.7 \\
& \varepsilon=4 \quad \frac{.1335-.0448}{(0.1)(.19035)} \simeq \frac{0.98}{.2} \simeq 4.9
\end{aligned}
$$

$$
\text { ce } h=\text { hoffensth }
$$

$$
\frac{d V_{e}}{d x}=c, \quad \frac{d V_{e}}{d z}=b=\lambda c
$$

Now $V=V_{i}-V_{e}-E_{r}=\lambda c\left\{\frac{\sinh \left(\frac{1}{2} / \lambda-\frac{1}{\lambda}\right)}{\cosh \left(\frac{1}{2} \frac{k}{2} / \pi\right)}\right.$

$$
\text { and } \begin{aligned}
V_{0} & =\lambda c \tanh \left(\frac{1}{2} L / \lambda\right) \\
& =\lambda c \tanh (h / \lambda)
\end{aligned}
$$

for h/z <0.2, get $V_{0}=h c$
for $h / x>2.3$, get $V_{0}=\lambda c$

Afloth certered, con show as $\left(\phi / 6-\frac{1}{2} Z_{m}\right.$

$$
z^{-\frac{1}{2} z_{m}}
$$

$4 / 28 / 65$
Atonal Stimulation
note that here we really do have to consitg

$$
\gamma_{0}=\gamma_{m}=1
$$

of itu $\varphi(z)$ enfluite
a the capons turn off

$$
\begin{aligned}
& \text { also } \frac{d U}{d x} a \\
& \text { at } z=\frac{1}{2} Z m \\
& \left.\frac{d V}{d z}=\frac{-b}{\operatorname{con}\left(\frac{1}{2} z m\right.}\right) \\
& \therefore \frac{d U}{d x}=b\left(1-\frac{1}{\cos \left(z^{2} z\right)}\right)
\end{aligned}
$$

12 Superseded
Then we con write

$$
\begin{equation*}
U_{0}=\lambda c \tanh \left(\frac{x_{m}}{2 \lambda}\right) \tag{23}
\end{equation*}
$$

Which has relevance for relative stimulus thresholds of axons which defer only in diagneter.

4 long.
lengths of such ayous are subjected to a curtin external gradient, the magnitude of metre depolarization men theatudedshowel he prop tonal to λ and hence to the spume root of diameter. To long lasts, the humporpocic tangent has
a value of 1.0 , and one should expect The critical stimulating gradient to be inversely proportional $t_{0} \lambda$ or to \sqrt{d}.
$4 / 23 / 65$
Sutroduction - Simply say that will consoler specific examples of $\frac{d y}{d z}$ cons of exp. function

$$
\theta 2=
$$

\qquad
Present closed \& Vo \& Km cases before gory into
also, mote that $\gamma_{0}=1, \gamma_{m}=1$ is the lest approx to the case
of Axons $:$ should usettis eorempplication to ayomes
2 and Mo/ntraduction - How Now Noil of these theoretical renee were ottanid in $196 /$ ant

Compre with
Ayous, $\gamma_{0}=1, \gamma_{m}=1, \quad \frac{d \varphi}{d z}=\lambda c$
Thon

$$
U_{0}=\frac{1-\tanh }{2}\left(\frac{x_{m}}{2 \lambda}\right)\left\{\frac{1+\operatorname{coth}\left(\frac{x_{m}}{2 \lambda}\right)}{1+\operatorname{coth}\left(\frac{x_{m}}{\lambda}\right)}\right\}
$$

for x_{m} very larze, $\operatorname{coth}=1$
oulget $U_{0}=\frac{\lambda c}{2}$

$$
\text { Arensunt gt } \frac{b}{2}\left(\frac{x_{m}}{2 \pi}\right)\left(\frac{1+\frac{2 \pi}{x x}}{1+\frac{x}{x_{m}}}\right)
$$

$$
\begin{aligned}
& \quad \frac{x_{m}+2 \lambda}{x_{m}+\lambda}=2-\frac{x_{m}}{\lambda+x_{m}} \\
& +f_{m}=1
\end{aligned}
$$

wheres if $\gamma_{0}=0$, then

$$
U_{0}=b \tanh \left(\frac{1}{2} 2 \pi\right)\left\{\frac{1+\operatorname{coth}\left(\frac{1}{2} z_{m}\right)}{1+\operatorname{coth} z_{m}}\right.
$$

altumation fot $t\left(\frac{e^{z}-1}{e^{z}}\right)$ for $\gamma_{0}=0, \gamma_{\text {o }}=1$

$$
=b\left(1-e^{-z}\right)
$$

$\operatorname{sinin} 2$ indem
for zlem by, so b, for zwersoul, sat $b-z$

18 E
Suppoe $\gamma_{0}=-1$

$$
\gamma_{m}=-1
$$

Them

Tom Rose and Milton Builtman are attondug a reeling of anatomists in Miami Thiscoele. They will display a demonstration consisting of many of Theirpictures at various levels of the bulb, and will midade their most recent findirigs together with something of orin riterprotation. They feel that it will be urger to get to work on The joint note as soon as they return. * prepared the enclosed memo, because

A saw a preview of their
disployon friday, April Itsems that they hove done additional searching of extend plexiform logger snice the trine Toni talked with the, and they now hang many examples of typical looking type I synapses directed from what must be mitral secondary dendrites to what oppear to be gemmuiles, presumably of grormile cell dendrites, and also many examples of type II synapses directed the other vary, and

Jeitshinft

K, H, Andres. p,558 2n-1 $\$$
apor poin the curusual contitast of the por synastir (tweb) Nranezone frimstherer procerses of gramile cellog \&ssea similes to the II.

Apar from web, he says that the rywpoes in extpet loyer sesemble Tupe II \& moy be presmad to belinhititory.
-apugses ient pley mediate
\therefore-assnual innifitry t dismbititor effect upon mitral t tuptod celle?
The contralfun ction conld nivitially invohy doudro-d panic syngres (gronnle unital) lis more important would be the synopses on the gramile peritarya odeep doudrites.

Ochi, g.

$$
\text { Jopenere Goof Physiol. } \frac{13}{113-128}(1963)
$$

Olfatory Bulb Respone to Antidrour alfortory Troct Stimulationni the Roblit.
Fog. 2 oup. 116 is miteresting
Compores orthodronur LOT AC vernsdepth.
AC shouns only a deep neg

Green pppass 1 (1) The syiect intemurion, becare they thuk corly of Rewshaw cells 8 coms ftol.
(2) Roy did not think of prolonged g from nitern
(3) The did nof thith of mitial secs, which provide for an explanation of their periodic pheriom - whith they beg. Bio infor, could do very well
? They go inkit sem when mitral als does rof fire. My question is, hour for aviry could nearest firmig nitial cell be whthou thair seenig it.

Yamomoto
The y use graanib callos mitineuvon, lung use Collatials to stur then.
This carses then trouble with AC - LOT interactions. bolich we con ge arond.

Qero, the prostulate 3 kansts of intervenors A, B_{1}, B_{2}
Theirdeop callsfire repe. - hir not definith gramule:

Points that trabble Yamomoto, bis not w?
(1) Repé. LOT is uns les effectine Than seper AC in futching IPSP
Thy have tauble, because thair refley collatrals Should get thru to internewon, whereas, when mibutited, our secondaries would not
(2) Smilarly, for footure of LOT To odd to IPSP alredy mode hy AC.

Several people ogree that A a bottom of page 7 of hololp. 8 meeds reviswn. Ziin worderdobut "previonaly" Inotice tha emploons on gramle.
Bu actually, both sets of dendsite both send \& recerre.

non-furang t firm should be clearly not alternate form a nom firing
little more detail on the two intuitions. Why woednit there
Footnote on compritationial simulation
Granule cell core conductor is amer

RF. twish secunet redly meano reconseat collatione oney
Kif, especially imterested inpossive aspect. Witk untihomie, remearlun that eva cheen one switite blecks othas coned furs।

But seelly, tom
anum large pop. activity
Plielthentioned that m.m. jon
thimiotives nore frognens
as endurip aro depol.
Phmoiol - appot570258
dalartllotkaty
124,586-604 19546
Jill $134,9.427-443 \quad 1956$

Main poin of Mypothesis
(1) Dendro-dendritic gramile xuitialsec
(2) Dual folarity - Emitial \rightarrow gramale

I gramule \rightarrow mitral
(3) Thus gromile dombites serve both receiving tsendicy sole as intemanon subserving latral inhibition.

Synapses of Dual Dendro-Dendritic Polarity between Niriral aul Gramile cells of Offactory Bulb.

Synaptic infibitory pothwoy vuepliated Cy dendro dendritic sychapes of both

It seeams that Yomanoto + twama (1962)
geen etal (1962)
attricuted issitital inlibition to a divect connection from of recurven collaterals to mitial secoudery

Orrego (1961) - watle bulb
while Phillips, Povell t shepherd (1963)
Shophund (1963)
Yamarnoto, yomanoto o Iuama (1963)
postalate gramule cell nitemeuron wrich is excitally colletral, his etself excites the mitial secoudary dendites.
Inmer mi botury
Our model is very sini lar, but provides a letter explenation of points tha there found houblesome ly these others esp.
(4) green at al muldont a Renshow all, thiden of mintrined a chivin granile cell.
(B) The periodic follongt non follound of the eatidiome in ver azall fify tous wodel or

Phillip, Powell \& Shopherd p.85
argue that 3 to 50 mere latency
suggests pessence of a lesi one in terneuroul stop p.86-mhit seff himited
p. 105 followny strong shodrs

Yamamoto, Younamoto \& fwama
Qso Orrego wait prambec cill to meliste inimitition.

Boo there is extia complication inta AC - Antorm Commisure - Stun,
whith, hovaren, Tom sayp will me stan Thyled all, aconicy to Vaherly.

Gemanperer
7eb. ${ }^{65}$ Juitschrift for Jellforschung

epsp mipamble cells the wone on witig.
f. Nemuphypiol.
$\operatorname{Vot} 25,1962$
p.467, §ecoulartide later.

Cheir Renshaw story Cluration

Cis. Comissme \longrightarrow Depp grande dendutos

Archinthostol. Dopan Col 24
Hirata
II fore atyprical types
(a) vesides loth sides
A.e. dewhelulaite

(1) mitial soma + gramb. miscono coses soun presyupthe
(c) bupolos a s-gle pocers is both prestpos? symopte.
(d) serid sympse =or axo-atamic ? inhit. Groy typer
(e) Subsynaptic Cistesni
allison, A.C.
Noploology of of astory sytem sperithites.
Biol. Rev. 1953

$$
28: 195-244
$$

ask Mills
Abow travelhiz Sordon from Boxton to here for two weeks
Also-21doy excursoon supplement?

Then for mext November 1965
for 6 months to/yer temporary appthend
? Visiting Saintist
?. Reactivate Commisson
?. Temporay Coirl Sevies dybe exins
? Staff 7 ellow

For of O'Brien mp $888-890$ in 7eb19, 1965 issue of Science
Duplication of Evoked Potential Wawform by the Cusue of Probability of firing of a Single Cell.

Microprpette in Cat cerebral cortex
Problem behnid all this is the elation of evoked potential to pattern of Jungle all firing. Even more so g explanation of evoked potuetial. Problem has sloght relation to Roll \& H ns popper.

There - pop-respome was dearly sum of spikes.
This study covers evoked potential over alan $2 / 3$ of a second,
\therefore assumed to he due to sequential activity of neurons, presumably in vanity.

Their unit profile is really a histogram of spite vo. vo A

* this resembles averaged field potential offer kithrig unit.

Did topping course destruction of cell os Suppose so.
Not sure what the polarity of Their hotel potential record
in., lin could check Chohhr hi's is sminfoult \therefore Fay to 'ss is sumpor (to : Fay to' sum

$$
\therefore \text { no a onovivita }
$$

it seems that ab little as $100 \mu \mathrm{~V}$ uirevohal pot. can corse sign nitrease inprobotility of frisig. forte of at least 5

Wha would 1 madict in comection with my thoughts about gromile unitral interaction

Hrecodin fom near soma, selatwice to cortical surfore, a pos. fiodd poot in plies currant flowog rodially toword surface.

459
supprese Ψ coust.
on Pheobese

$$
\frac{\varepsilon}{V^{2}}=\frac{R_{1}+R_{2} V^{2}}{R_{3}+R_{4} g}=\frac{1}{V((t-V)}+\frac{g(v+.1)}{V^{2}(1-V)}-\frac{\psi}{V^{2}(1-V)}
$$

Note that $\psi>0$ means curran from insise to outide

$$
7 \mathrm{~m}
$$

i.e ψ pos in
cothodal
and eyatalouy

$$
\text { if } y=0
$$

offer of ψ^{*} woul he
$\operatorname{ancs} \frac{\psi}{1-V}$
If \dot{v} soto le zeno when $\psi>0$
then $-v+(1-v)$ \& mist he mare neg

$\sqrt{\text { mhertose is where }}$

$$
\text { p. } 9 \text { of Book } 3
$$

$$
1 H+H
$$

$$
8.4+y=\cdot 1
$$

$$
\text { is } \frac{d r}{d v}=\frac{\operatorname{coch}}{\text { gur }}
$$

fo Eeg

Those known to occur in normal ionic media.

The computational smiflicity is active by avoidury Exponential functions are not used in the computations: step sises are obtained by antocatalytic growth, deloy is obtained by makniz the growth of a quenching conductance depend upon the presence of excitatory conductance.

The system of equations con be sketched es follows:
(1) $\dot{v}=$
(2) $\dot{\varepsilon}=F_{1}(v)-Q(\varepsilon, g)$
(马) $\dot{j}=F_{3}^{(\xi q)}-F_{4}(g)$
where (f. Rall, 1962, 1964)
(44) $v=\left(V_{m}-E_{r}\right) /\left(E_{\epsilon}-E_{\Omega}\right)$
we wish to provide
we wish this
is displaced beyond its threshold value (say 0.2), we must arrange that this will cause the value of ε to grow.

The growth of the action potential indues a growth in the value of ε (and this causes the term $(1-v) \varepsilon$ in equation (2) tocontritute a grow th rote which exceeds the passive decay term. Suppose
(1) $v=0.3$; then the passive decoy rate is -0.3 while the growth term is 0.7 E. As both v and ε grow and approach their peak values,
for umporm patch of menbrove
Sperific Saptom con he written

$$
\begin{aligned}
& \frac{d v}{d T}=\varepsilon(1-V)-g(\beta+v)-v+\psi \\
& \frac{d \varepsilon}{\partial T}=k_{1} v^{2}+k_{2} y^{4}-\left(k_{3}+k_{4} g\right) \varepsilon \\
& \frac{d \partial}{d T}=k_{5}\left(k_{3}+k_{4} g\right) \varepsilon-k_{6} g
\end{aligned}
$$

$$
\begin{aligned}
& T=t / r \\
& V=\left(V_{m}-E_{r}\right) /\left(E_{c}-E_{r}\right) \\
& \varepsilon=G_{\epsilon} / G_{r} \\
& g=G_{j} / G_{r} \\
& \beta=\left(E_{j}-E_{r}\right) /\left(E_{G}-E_{r}\right)
\end{aligned}
$$

Book 3 p. 4
$9 / 26 / 63$

1.51 ngivolues
tianbles
$1 / 1064$

Table of Symbols

Dimensionless Quantities:

3

$$
\begin{aligned}
& V=\left(V_{m}-E_{r}\right) /\left(E_{\epsilon}-E_{r}\right)=\text { normalized deviation of membrane } \\
& \text { potential from its resting value } \\
& \varepsilon=G_{e} / G_{r}=\text { measure of excitation } \\
& g=G_{j} / G_{j}=\text { measure of quenching or mihibition } \\
& \chi=I_{m} R_{m} /\left(E_{\epsilon}-E_{r}\right)=\text { measure of ret monibrove cussact } \\
& \beta=\left(E_{j}-E_{r}\right) /\left(E_{\epsilon}-E_{r}\right)= \\
& =\text { constant }=\text { volume of } v \text { worn } \forall_{m}=E_{j} \text {. }
\end{aligned}
$$ Fine corstaret.

Predictions for Tod Lewis
I 1957 note to science predicted $\tau \longrightarrow 4$ nesec deloged current $\longrightarrow \epsilon$
1960 presented theory for linear plot $\log \left\{\sqrt{t} \frac{d V}{d t}\right\}$ ort one range from $t=r t_{0} t=2 \tau$ These predictions have been confirmed both in vi 1960 poper, and even by Eccles 1961 proper

II Wu the 1955 theoretical popes in f. Call. Comp. Physio, figs 1 ant 2 illustrate predictions, while fig. 4 presents an opproy inmate experimental verification. 7op.5, 6 and 7 were also verified in a general names, but hove not been followed up further. The crus, at the time, was discussed on pp 401-404, phis the fort that only a snigle parameter had to he adjusted to fit the family of curves,

III In 1956 (Roll and Hunt, g. Gen. Phpiol. 39, 397-422) we presented a theoretical model on pages $414-420$ designed to fit Figs 1-8 and the first four columns of Table I. The thong predicted what was verified by 7ig.9, and infarct, the prediction was made before the figure.

IV Lu the 1960 poser, IPSP time converse was show to be connistow with the possibility of generation near the soma.
also, 1962 NY. acod.poper points to greater effectiveness of mihilution near soma.
Wore recently, Eccles clams to hove evidence for this from several systems.

I The predicted dependence upon distance of peals extracellular negative potential 1962-Biopluy of. 7 Hg. 10 , curve F was approyimatety verified by comparisons with data of Nelson and Frank. Also The tine course (7 gig. 11), esp. The positive component were predicted for prossive densities, in opproy. agreement with Frank of Nelson: see Their poper in g. Neurophysiol 27, $918-927$ (1964) Some o The details which were presented o the fut. Buophymiss Congress in 1962 have not yet been frubbished.

(Abstract for First Lecture)

Theoretical Significance of Dendritic Trees for Neuronal InputOutput Relations. (Wilfrid Rell, National Institutes of Health, Bethesda, Ma.)

Neural modelers have generally assumed that the synaptic input to a neuron can be treated as input delivered to a single point; thus they have neglected the extensively branched neuronal receptive surface. There has also been a tendency to assume that a combination of synaptic excitation and inhibition can be treated as a simple arithmetic sum of positive and negative input components; this neglects known properties of nerve membranes. It is the purpose of this talk to draw attention to theoretical models which avoid these oversimpliflications, and to present the results of computations designed to test the significance of what may be called spatiotemporal patterns of synaptic input.

(Abstract for Second Lecture)

Some Problems in Developing a Theory of Dendritic Meurons. (Wilfrid Rail, National Institutes of Health, Bethesda, Ma.)

The development of a mathematical model of dendritic neurons represents an attempt to combine three different kinds of knowledge Into a coherent theory: (1) the anatomical fact of extensive dendritic branching, (2) theoretical models of nerve membrane, and (3) quantitative electrophysiological information that has been obtained from individual neurons by means of intracellular and extracellular microelectrodes. problems as (a) choice of simplifying assumptions, (b) fundamental parsmeters related to time, to dendritic length, and to dendritic diameters, (c) consequences for physical intuition, (d) future for computation and testing.

Mogh a rhio poper to
fo Gordon Corponce
CNS syyterns composed of newions of
no of reloys or adders
The seurany themstues how logical mopertases.

Assemblage of dots - commes.
Then Soy, ohwell, con le' sevenal dots represens a newon. This dos vis monls withoni conriduable nod be conse Afee of one nemon on other tonds to be ollar nothing jer iñfulse unidrectronal, while the of neghborig compartuents of some venzon offer eash other contrinomily ϕ bidus ctorially.

Perhops shareld purrue formulatior this is conathematically is could hove mattix with differen twol of elements. ie. for eatiotorms $\mu_{i j}=u_{j i}$

$$
\text { ie. for ebatorouns } \mu_{i j}=\mu_{j i}{ }_{i j}
$$

Potency of Synaptic Aulitition
Factors in The Potency of Synop tic tuliirition His recut herne ferthiandile to

The union the nymptrie milutition showed be more. Sflectine when delivered to the soma the to the denbitic periphery of a neuron is now several years old, and has recently become very fashionable.

Chat tonne ATanshi on corticollager
check mueller on kinetics

